Алгебра и геометрия. Итоговая работа. Билет №4
Состав работы
|
|
|
|
Работа представляет собой zip архив с файлами (распаковать онлайн), которые открываются в программах:
- Microsoft Word
Описание
1.Исследование систем линейных уравнений. Теорема Кронекера-Капелли.
Однородные системы.
2. Решить матричное уравнение , где
3. Даны векторы
Найти .
4. Даны координаты вершин пирамиды
Найти координаты точки пересечения плоскости ABC с высотой пирамиды, опущенной из вершины D на эту плоскость.
5. Привести к каноническому виду уравнение кривой второго порядка, построить кривую, найти фокусное расстояние и эксцентриситет
Однородные системы.
2. Решить матричное уравнение , где
3. Даны векторы
Найти .
4. Даны координаты вершин пирамиды
Найти координаты точки пересечения плоскости ABC с высотой пирамиды, опущенной из вершины D на эту плоскость.
5. Привести к каноническому виду уравнение кривой второго порядка, построить кривую, найти фокусное расстояние и эксцентриситет
Дополнительная информация
Дата оценки: 08.02.2016
Рецензия:
Ваша работа зачтена, хотя задача 2 решена с ошибкой.
Рецензия:
Ваша работа зачтена, хотя задача 2 решена с ошибкой.
Похожие материалы
Алгебра и геометрия. Билет №4
rai9247
: 19 апреля 2019
Дисциплина «Алгебра и геометрия»
1. Исследование систем линейных уравнений. Теорема Кронекера-Капелли.
Однородные системы.
2. Решить матричное уравнение , где
.
3. Даны векторы
Найти .
4. Даны координаты вершин пирамиды
.
Найти координаты точки пересечения плоскости ABC с высотой пирамиды, опущенной из вершины D на эту плоскость.
5. Привести к каноническому виду уравнение кривой второго порядка, построить кривую, найти фокусное расстояние и эксцентриситет
.
100 руб.
Алгебра и геометрия, Билет 4
тантал
: 1 декабря 2017
1. Исследование систем линейных уравнений. Теорема Кронекера-Капелли.
Однородные системы.
2. Решить матричное уравнение , где
.
3. Даны векторы
Найти .
4. Даны координаты вершин пирамиды
.
Найти координаты точки пересечения плоскости ABC с высотой пирамиды, опущенной из вершины D на эту плоскость.
5. Привести к каноническому виду уравнение кривой второго порядка, построить кривую, найти фокусное расстояние и эксцентриситет
.
100 руб.
Алгебра и геометрия. Экзамен. Билет №4
ANNA
: 13 мая 2017
Задание 1. Исследование систем линейных уравнений. Теорема Кронекера-Капелли. Однородные системы.
Задание 2. Решить матричное уравнение
Задание 3. Даны векторы
Задание 4. Даны координаты вершин пирамиды
Задание 5. Привести к каноническому виду уравнение кривой второго порядка, построить кривую, найти фокусное расстояние и эксцентриситет
Более подробно смотрите во вложенном скриншоте
250 руб.
Экзамен. Билет №4. Алгебра и геометрия
Efimenko250793
: 25 января 2016
1 Исследование систем линейных уравнений. Теорема Кронекера-Капелли. Однородные системы.
2 Решить матричное уравнение , где
3 Даны векторы , , .
Найти .
4 Даны координаты вершин пирамиды
, , , .
Найти координаты точки пересечения плоскости с высотой пирамиды, опущенной из вершины на эту плоскость.
5 Привести к каноническому виду уравнение кривой второго порядка, построить кривую, найти фокусное расстояние и эксцентриситет
.
500 руб.
Зачетная работа по алгебре и геометрии/ билет 4
ksushkin
: 25 июля 2018
Зачетная работа по алгебре и геометрии
Оценена Ваша работа по предмету:
Алгебра и геометрия
Вид работы: Зачет
Оценка:Зачет
Дата оценки: 17.06.2016
Рецензия:
Уважаемая ,
Ваша работа выполнена хорошо.
Агульник Владимир Игоревич
700 руб.
Экзаменационная работа. Алгебра и Геометрия. Билет №4.
rimmabatoeva
: 18 июня 2018
Экзамен по предмету Алгебра и Геометрия. Билет 4
Полностью все задания в виде скриншота из билета в приложенном файле JPG
Задание 1: Исследование систем линейных уравнений. Теорема Кронекера-Капелли. Однородные системы.
Задание 2: Решить матричное уравнение
Задание 3: Даны векторы:
Найти
Задание 4: Даны координаты вершин пирамиды:
Найти координаты точки пересечения плоскости ABC с высотой пирамиды, опущенной из вершины D на эту плоскость.
Задание 5. Привести к каноническому виду ура
150 руб.
Итоговая работа по дисциплине: Алгебра и Геометрия. Билет №3
kala4ev
: 6 октября 2016
Решение систем линейных уравнений методом Крамера и методом Гаусса.
Решить матричное уравнение
Даны векторы
Даны координаты вершин пирамиды
A(1;0;-2), B(3;2;-2), C(-4;-1;3), D(2;3;1)..
Найти координаты точки пересечения плоскости ABC с высотой пирамиды, опущенной из вершины D на эту плоскость.
70 руб.
Экзамен gо дисциплине: Алгебра и геометрия. Билет № 4
ilin99
: 12 мая 2011
Экзамен
по дисциплине: Алгебра и геометрия
БИЛЕТ № 4
1. Формулы Крамера для решения систем линейных уравнений.
2. Уравнение линии на плоскости. Расстояние между точками. Деление отрезка пополам.
3. Найти острый угол между диагоналями параллелограмма, построенного на векторах
4. Найти уравнение линии центров окружностей:
5. Через точку пересечения прямых и провести прямую, делящую отрезок АВ, где А (4; 3), В (0; 1), пополам.
100 руб.
Другие работы
ММА/ИДО Иностранный язык в профессиональной сфере (ЛТМ) Тест 20 из 20 баллов 2024 год
mosintacd
: 28 июня 2024
ММА/ИДО Иностранный язык в профессиональной сфере (ЛТМ) Тест 20 из 20 баллов 2024 год
Московская международная академия Институт дистанционного образования Тест оценка ОТЛИЧНО
2024 год
Ответы на 20 вопросов
Результат – 100 баллов
С вопросами вы можете ознакомиться до покупки
ВОПРОСЫ:
1. We have … to an agreement
2. Our senses are … a great role in non-verbal communication
3. Saving time at business communication leads to … results in work
4. Conducting negotiations with foreigners we shoul
150 руб.
Задание №2. Методы управления образовательными учреждениями
studypro
: 13 октября 2016
Практическое задание 2
Задание 1. Опишите по одному примеру использования каждого из методов управления в Вашей профессиональной деятельности.
Задание 2. Приняв на работу нового сотрудника, Вы надеялись на более эффективную работу, но в результате разочарованы, так как он не соответствует одному из важнейших качеств менеджера - самодисциплине. Он не обязателен, не собран, не умеет отказывать и т.д.. Но, тем не менее, он отличный профессионал в своей деятельности. Какими методами управления Вы во
200 руб.
Особенности бюджетного финансирования
Aronitue9
: 24 августа 2012
Содержание:
Введение
Теоретические основы бюджетного финансирования
Понятие и сущность бюджетного финансирования
Характеристика основных форм бюджетного финансирования
Анализ бюджетного финансирования образования
Понятие и источники бюджетного финансирования образования
Проблемы бюджетного финансирования образования
Основные направления совершенствования бюджетного финансирования образования
Заключение
Список использованный литературы
Цель курсовой работы – исследовать особенности бюджетного фин
20 руб.
Программирование (часть 1-я). Зачёт. Билет №2
sibsutisru
: 3 сентября 2021
ЗАЧЕТ по дисциплине “Программирование (часть 1)”
Билет 2
Определить значение переменной y после работы следующего фрагмента программы:
a = 3; b = 2 * a – 10; x = 0; y = 2 * b + a;
if ( b > y ) or ( 2 * b < y + a ) ) then begin x = b – y; y = x + 4 end;
if ( a + b < 0 ) and ( y + x > 2 ) ) then begin x = x + y; y = x – 2 end;
200 руб.