Алгебра и геометрия. Итоговая работа. Билет №4
Состав работы
|
|
|
|
Работа представляет собой zip архив с файлами (распаковать онлайн), которые открываются в программах:
- Microsoft Word
Описание
1.Исследование систем линейных уравнений. Теорема Кронекера-Капелли.
Однородные системы.
2. Решить матричное уравнение , где
3. Даны векторы
Найти .
4. Даны координаты вершин пирамиды
Найти координаты точки пересечения плоскости ABC с высотой пирамиды, опущенной из вершины D на эту плоскость.
5. Привести к каноническому виду уравнение кривой второго порядка, построить кривую, найти фокусное расстояние и эксцентриситет
Однородные системы.
2. Решить матричное уравнение , где
3. Даны векторы
Найти .
4. Даны координаты вершин пирамиды
Найти координаты точки пересечения плоскости ABC с высотой пирамиды, опущенной из вершины D на эту плоскость.
5. Привести к каноническому виду уравнение кривой второго порядка, построить кривую, найти фокусное расстояние и эксцентриситет
Дополнительная информация
Дата оценки: 08.02.2016
Рецензия:
Ваша работа зачтена, хотя задача 2 решена с ошибкой.
Рецензия:
Ваша работа зачтена, хотя задача 2 решена с ошибкой.
Похожие материалы
Алгебра и геометрия. Билет №4
rai9247
: 19 апреля 2019
Дисциплина «Алгебра и геометрия»
1. Исследование систем линейных уравнений. Теорема Кронекера-Капелли.
Однородные системы.
2. Решить матричное уравнение , где
.
3. Даны векторы
Найти .
4. Даны координаты вершин пирамиды
.
Найти координаты точки пересечения плоскости ABC с высотой пирамиды, опущенной из вершины D на эту плоскость.
5. Привести к каноническому виду уравнение кривой второго порядка, построить кривую, найти фокусное расстояние и эксцентриситет
.
100 руб.
Алгебра и геометрия, Билет 4
тантал
: 1 декабря 2017
1. Исследование систем линейных уравнений. Теорема Кронекера-Капелли.
Однородные системы.
2. Решить матричное уравнение , где
.
3. Даны векторы
Найти .
4. Даны координаты вершин пирамиды
.
Найти координаты точки пересечения плоскости ABC с высотой пирамиды, опущенной из вершины D на эту плоскость.
5. Привести к каноническому виду уравнение кривой второго порядка, построить кривую, найти фокусное расстояние и эксцентриситет
.
100 руб.
Алгебра и геометрия. Экзамен. Билет №4
ANNA
: 13 мая 2017
Задание 1. Исследование систем линейных уравнений. Теорема Кронекера-Капелли. Однородные системы.
Задание 2. Решить матричное уравнение
Задание 3. Даны векторы
Задание 4. Даны координаты вершин пирамиды
Задание 5. Привести к каноническому виду уравнение кривой второго порядка, построить кривую, найти фокусное расстояние и эксцентриситет
Более подробно смотрите во вложенном скриншоте
250 руб.
Экзамен. Билет №4. Алгебра и геометрия
Efimenko250793
: 25 января 2016
1 Исследование систем линейных уравнений. Теорема Кронекера-Капелли. Однородные системы.
2 Решить матричное уравнение , где
3 Даны векторы , , .
Найти .
4 Даны координаты вершин пирамиды
, , , .
Найти координаты точки пересечения плоскости с высотой пирамиды, опущенной из вершины на эту плоскость.
5 Привести к каноническому виду уравнение кривой второго порядка, построить кривую, найти фокусное расстояние и эксцентриситет
.
500 руб.
Зачетная работа по алгебре и геометрии/ билет 4
ksushkin
: 25 июля 2018
Зачетная работа по алгебре и геометрии
Оценена Ваша работа по предмету:
Алгебра и геометрия
Вид работы: Зачет
Оценка:Зачет
Дата оценки: 17.06.2016
Рецензия:
Уважаемая ,
Ваша работа выполнена хорошо.
Агульник Владимир Игоревич
700 руб.
Экзаменационная работа. Алгебра и Геометрия. Билет №4.
rimmabatoeva
: 18 июня 2018
Экзамен по предмету Алгебра и Геометрия. Билет 4
Полностью все задания в виде скриншота из билета в приложенном файле JPG
Задание 1: Исследование систем линейных уравнений. Теорема Кронекера-Капелли. Однородные системы.
Задание 2: Решить матричное уравнение
Задание 3: Даны векторы:
Найти
Задание 4: Даны координаты вершин пирамиды:
Найти координаты точки пересечения плоскости ABC с высотой пирамиды, опущенной из вершины D на эту плоскость.
Задание 5. Привести к каноническому виду ура
150 руб.
Итоговая работа по дисциплине: Алгебра и Геометрия. Билет №3
kala4ev
: 6 октября 2016
Решение систем линейных уравнений методом Крамера и методом Гаусса.
Решить матричное уравнение
Даны векторы
Даны координаты вершин пирамиды
A(1;0;-2), B(3;2;-2), C(-4;-1;3), D(2;3;1)..
Найти координаты точки пересечения плоскости ABC с высотой пирамиды, опущенной из вершины D на эту плоскость.
70 руб.
Экзамен gо дисциплине: Алгебра и геометрия. Билет № 4
ilin99
: 12 мая 2011
Экзамен
по дисциплине: Алгебра и геометрия
БИЛЕТ № 4
1. Формулы Крамера для решения систем линейных уравнений.
2. Уравнение линии на плоскости. Расстояние между точками. Деление отрезка пополам.
3. Найти острый угол между диагоналями параллелограмма, построенного на векторах
4. Найти уравнение линии центров окружностей:
5. Через точку пересечения прямых и провести прямую, делящую отрезок АВ, где А (4; 3), В (0; 1), пополам.
100 руб.
Другие работы
Теория массового обслуживания. Зачетное задание. Билет №12.
DreaMaster
: 14 сентября 2014
1. Случайный процесс. Математическое ожидание и дисперсия.
2. Среднее число требований в системе M/G/1. Формула Полячека-Хинчина.
55 руб.
Лабораторные работы 1-3 по дисциплине: Операционные системы. Вариант №7
IT-STUDHELP
: 21 декабря 2022
Лабораторная работа No1
по дисциплине:
«Операционные системы»
Задание к лабораторной работе No1
Выполнить указанные действия. Создать отчет, в котором отразить выполняемое
задание, команды, с помощью которых выполняются указанные действия и результат,
полученный после выполнения команды (в виде скриншотов).
1. Создать файл a1 с помощью команды cat; ввести в файл текст из 6-ти строк вида
(строка начинается с цифры порядкового номера строки):
1. my name is ...
2. my surname is ...
3. login is ...
1200 руб.
Схема производства цемента по сухому способу-Чертеж-Машины и аппараты нефтехимических производств-Курсовая работа-Дипломная работа
lelya.nakonechnyy.92@mail.ru
: 13 июня 2018
Схема производства цемента по сухому способу-(Формат Компас-CDW, Autocad-DWG, Adobe-PDF, Picture-Jpeg)-Чертеж-Машины и аппараты нефтехимических производств-Курсовая работа-Дипломная работа
368 руб.
Логистика. Вариант №1
афкфф
: 21 декабря 2014
Три поставщика одного и того же продукта располагают в планируемый период следующими его запасами: первый – А условных единиц, второй – В условных единиц, третий – С условных единиц. Этот продукт должен быть перевезен к трем потребителям, потребности которых равны Д, Е и К условных единиц, соответственно.
Необходимо определить наиболее дешевый вариант перевозок, если транспортные расходы на одну условную единицу составляют:
200 руб.