Алгоритмы и вычислительные методы оптимизации. Билет №4
Состав работы
|
|
Работа представляет собой файл, который можно открыть в программе:
- Microsoft Word
Описание
Билет No4
Все вычисления проводить с использованием простых дробей, округления не допускаются. Все нецелые числа в ответе должны быть записаны в виде простых дробей.
Перейти от канонической к симметричной форме записи задачи линейного программирования.
Z=-5x_1+13x_2+3x_3-9x_4→min
{(2x_1-4x_2-x_3+x_4=-3@-3x_1+7x_2+2x_3-x_4=9@x_1+4x_2+x_3+x_5=15@x_i≥0,i=1,...,5)
Известно оптимальное решение X*=(0;1;0;0) задачи линейного программирования:
Z=-8x_1-7x_2-14x_3-4x_4→max
{(x_1+2x_2+x_3+x_4≥2@x_1-2x_2+2x_3-2x_4≤7@x_i≥0,i=1,2,3,4)
Составьте двойственную задачу и найдите ее оптимальное решение по теореме равновесия.
Все вычисления проводить с использованием простых дробей, округления не допускаются. Все нецелые числа в ответе должны быть записаны в виде простых дробей.
Перейти от канонической к симметричной форме записи задачи линейного программирования.
Z=-5x_1+13x_2+3x_3-9x_4→min
{(2x_1-4x_2-x_3+x_4=-3@-3x_1+7x_2+2x_3-x_4=9@x_1+4x_2+x_3+x_5=15@x_i≥0,i=1,...,5)
Известно оптимальное решение X*=(0;1;0;0) задачи линейного программирования:
Z=-8x_1-7x_2-14x_3-4x_4→max
{(x_1+2x_2+x_3+x_4≥2@x_1-2x_2+2x_3-2x_4≤7@x_i≥0,i=1,2,3,4)
Составьте двойственную задачу и найдите ее оптимальное решение по теореме равновесия.
Дополнительная информация
Уважаемый студент, дистанционного обучения,
Оценена Ваша работа по предмету: Алгоритмы и вычислительные методы оптимизации
Вид работы: Экзамен
Оценка: Отлично
Дата оценки: 06.07.2020
Рецензия:Уважаемый,
Галкина Марина Юрьевна
Помогу с вашим вариантом, другой работой или дисциплиной.
E-mail: sneroy20@gmail.com
Оценена Ваша работа по предмету: Алгоритмы и вычислительные методы оптимизации
Вид работы: Экзамен
Оценка: Отлично
Дата оценки: 06.07.2020
Рецензия:Уважаемый,
Галкина Марина Юрьевна
Помогу с вашим вариантом, другой работой или дисциплиной.
E-mail: sneroy20@gmail.com
Похожие материалы
Экзамен. Алгоритмы и вычислительные методы оптимизации. Билет №4
Александра74
: 27 октября 2020
Билет №4
1. Перейти от канонической к симметричной форме записи задачи линейного программирования.
Z=-5x1+13x2+3x3-9x4->min
2x1-4x2-x3+x4=-3
-3x1+7x2+2x3-x4=9
x1+4x2+x3+x5=15
xi>=0,i=1,...,5
2. Известно оптимальное решение X*=(0;1;0;0) задачи линейного программирования:
Z=-8x1-7x2-14x3-4x4->max
x1+2x2+x3+x4>=2
x1-2x2+2x3-2x4<=7
xi>=0,i=1,...,4
Составьте двойственную задачу и найдите ее оптимальное решение по теореме равновесия.
300 руб.
Алгоритмы и вычислительные методы оптимизации
Anza
: 22 марта 2021
Лабораторная работа №1
Решения систем линейных уравнений методом Жордана-Гаусса
Написать программу, находящую решение системы линейных уравнений методом Жордана-Гаусса с выбором главного элемента в столбце.
Вариант выбирается по последней цифре пароля.
100 руб.
Алгоритмы и вычислительные методы оптимизации
snapsik
: 8 марта 2021
Курсовая работа
Решение задачи линейного программирования, теория двойственности
Присылаемый на проверку архив должен содержать 2 файла:
файл отчета, содержащий титульный лист, условие задачи, формулы используемых методов, исходный текст программы (с указанием языка реализации), результаты работы программы (можно в виде скриншотов), ответы на вопросы для защиты;
файл с исходным текстом программы (программу можно писать на любом языке программирования).
Задание на курсовую работу
1. Перейти к к
200 руб.
Экзаменационная работа по дисциплине: Алгоритмы и вычислительные методы оптимизации. Билет №4
Roma967
: 15 октября 2023
Билет №4
Все вычисления проводить с использованием простых дробей, округления не допускаются. Все нецелые числа в ответе должны быть записаны в виде простых дробей.
1. Перейти от канонической к симметричной форме записи задачи линейного программирования.
Z=-5x1+13x2+3x3-9x4 -> min
2x1-4x2-x3+x4=-3
-3x1+7x2+2x3-x4=9
x1+4x2+x3+x5=15
xi>=0, i=1,...,5
2. Известно оптимальное решение X*=(0;1;0;0) задачи линейного программирования:
Z=-8x1-7x2-14x3-4x4 -> max
x1+2x2+x3+x4>=2
x1-2x2+2x3-2x4<=7
xi>=0,
600 руб.
Алгоритмы и вычислительные методы оптимизации. Вариант №06
holm4enko87
: 10 декабря 2024
Задание на курсовую работу
Перейти к канонической форме задачи линейного программирования.
Z(x_1,x_2)=p_1 x_1+p_2 x_2→min
{(a_1 x_1+a_2 x_2≥a@b_1 x_1+b_2 x_2≥b@c_1 x_1+c_2 x_2≥c@x_1;x_2≥0)
Написать программу, решающую задачу линейного программирования в канонической форме симплекс-методом с выводом всех промежуточных симплексных таблиц.
Решить исходную задачу графически и отметить на чертеже точки, соответствующие симплексным таблицам, полученным при выполнении программы из п.1.
Составить д
800 руб.
Алгоритмы и вычислительные методы оптимизации(Вариант 3)
Роман16
: 30 июня 2022
Решение задачи линейного программирования, теория двойственности
Присылаемый на проверку архив должен содержать 2 файла:
− файл отчета, содержащий титульный лист, условие задачи, формулы используемых методов, результаты выполнения аналитических расчетов, исходный текст программы (с указанием языка реализации), результаты работы программы (можно в виде скриншотов), список используемой литературы и интернет-источников;
− файл с исходным текстом программы (программу можно писать на любом языке пр
400 руб.
Алгоритмы и вычислительные методы оптимизации. Вариант №02
IT-STUDHELP
: 6 февраля 2022
Решение задачи линейного программирования, теория двойственности
Присылаемый на проверку архив должен содержать 2 файла:
файл отчета, содержащий титульный лист, условие задачи, формулы используемых методов, исходный текст программы (с указанием языка реализации), результаты работы программы (можно в виде скриншотов), ответы на вопросы для защиты;
файл с исходным текстом программы (программу можно писать на любом языке программирования).
Задание на курсовую работу
Перейти к канонической форме
800 руб.
Алгоритмы и вычислительные методы оптимизации. Билет №5
IT-STUDHELP
: 6 февраля 2022
Билет No5
Все вычисления проводить с использованием простых дробей, округления не допускаются. Все нецелые числа в ответе должны быть записаны в виде простых дробей.
Найти целочисленное решение задачи линейного программирования методом Гомори.
Z=3x_1+x_2→max
{(3x_1+2x_2≤8@x_1+4x_2≤10@x_1,x_2≥0)
Составить функцию Лагранжа и проверить выполнение условий Куна-Таккера (найти параметры i) для оптимальной точки (8;3) задачи нелинейного программирования.
Z=(x_1-10)^2+(x_2-2)^2→min
{(x_1-4x_2≤-4@x_1+x
340 руб.
Другие работы
Гидравлика и гидравлические машины ТГСХА 2011 Задача 4.10
Z24
: 24 ноября 2025
Жидкость с плотностью ρ=850 кг/м³ подается от насоса в гидроцилиндр, а затем через отверстие в поршне площадью S0=5 мм² и гидродроссель Д в бак (рб=0).
1) Определить, при какой площади проходного сечения дросселя Д поршень будет находиться в неподвижном равновесии под действием силы F=3000 H, если диаметр поршня D=100 мм, диаметр штока dш=80 мм, коэффициент расхода отверстия в поршне μ0=0,8, коэффициент расхода дросселя μдр=0,65, давление насоса рн=1 МПа.
2) Определить площадь проходного
160 руб.
Гидромеханика РГУ нефти и газа им. И. М. Губкина Гидростатика Задача 27 Вариант 9
Z24
: 6 декабря 2025
В днище резервуара с водой имеется круглое спускное отверстие, закрытое плоским клапаном. Определить, при каком диаметре D цилиндрического поплавка клапан автоматически откроется при достижении высоты уровня жидкости в резервуаре равной H? Длина цепочки, связывающей поплавок с клапаном, равна l, вес подвижных частей устройства G, давление на свободной поверхности жидкости измеряется мановакуумметром, его показание равно рм, температура воды t°C.
150 руб.
Контрольная работа по дисциплине: Дискретная математика. Вариант №10
SibGOODy
: 20 июля 2018
I. Задано универсальное множество U и множества A, B, C, D. Найти результаты действий a) - д) и каждое действие проиллюстрировать с помощью диаграммы Эйлера-Венна.
U={1,3,5,7,9}, A={1,3,9}, B={5,7,9}, C={4,5}, D={9}.
II. Ввести необходимые элементарные высказывания и записать логической формулой следующее предложение.
“Если студент не получил все зачёты или не сдал все экзамены, то он не получает стипендию”.
III. Для булевой функции найти методом преобразования минимальную ДНФ. По таблице ист
500 руб.
Лабораторные работы 1-3 по дисциплине: Микропроцессорная техника в системах связи. Вариант №3
IT-STUDHELP
: 26 декабря 2022
Лабораторная работа № 1
часть 1
Вывод информации через параллельные порты
1. Цель работы
1.1. Изучить особенности работы параллельных портов микроконтроллера.
1.2. Изучить схемы подключения светодиодов к цифровым микросхемам.
1.3. Научиться управлять светодиодами при помощи программы.
1.4. Научиться управлять цифровыми индикаторами.
1.5. Научиться загружать программы в микроконтроллер.
1.6. Изучить способы отладки программ на лабораторном стенде ЛЭСО1.
2. Методические указания по работе с лаб
300 руб.