Курсовая работа по дисциплине: Теория вероятности и математическая статистика (2-я часть). Вариант №4
Состав работы
|
|
Работа представляет собой файл, который можно открыть в программе:
- Microsoft Word
Описание
Задача 1
В партии из N деталей ровно M бракованных. Дайте ответы на следующие вопросы (запишите формулы и сделайте вычисления с подробными объяснениями):
а) какова вероятность того, что наудачу выбранная деталь из партии окажется бракованной?
б) какова вероятность того, что наудачу выбранная деталь из партии окажется НЕ бракованной?
в) какова вероятность того, что из K1 случайно выбранных из партии деталей ровно L1 окажется бракованными?
г) какова вероятность того, что из K2 случайно выбранных из партии деталей не более L2 окажется бракованными?
д) какова вероятность того, что из K3 случайно выбранных из партии деталей не менее L3 окажется НЕ бракованными?
е) из партии выбрано случайно K4 деталей, из них L4 оказалось бракованными; какова вероятность, что больше в выборке нет бракованных деталей?
ж) из партии выбрано K5 деталей, и которых не менее L5 оказалось бракованными; какова вероятность того, что в последующей выборке из K6 деталей бракованных окажется не более L6 (предыдущая выборка в партию не возвращается)?
Числовые данные – Вариант 4
N M K1 L1 K2 L2 K3 L3 K4 L4 K5 L5 K6 L6
158000 14220 1195 161 970 12 97 14 1323 131 16 3 495 9
Задача 2
«Неправильную» монетку (вероятность выпадения «орла» составляет A) подбрасывают N раз. Рассматриваются следующие величины: x — количество выпавших «орлов», y — количество выпавших «решек», z1=x/y, z2=x+y, z3=x/z2. Ответьте на следующие вопросы об этих случайных величинах:
а) опишите распределения с.в. x, y, z1, z2, z3; найдите математические ожидания, вторые моменты, дисперсии;
б) опишите условное распределение с.в. x|y;
в) в процессе подбрасывания на M-том броске оказалось, что уже выпало ровно L «орлов», какова вероятность того, что всего выпадет не более K решек?
г) найдите ковариацию и коэффициент корреляции величин x и y;
д) найдите ковариацию и коэффициент корреляции величин x2 и y;
Числовые данные
A N M L K
Вариант 4 0,67 238 136 88 65
Задача 3
Срок службы электрической лампы имеет показательное распределение с математическим ожиданием L часов. Ответьте на следующие вопросы:
а) какова вероятность того, что лампа прослужит от m1 до M1 часов?
б) какова вероятность того, что прослужившая уже m2 часов лампа прослужит еще не менее M2 часов?
в) какова вероятность того, что средний срок службы для N3 ламп составит не менее M3 часов?
г) какова вероятность того, что для N4 ламп срок службы составит от m4 до M4 часов?
Числовые данные
L m1 M1 m2 M2 N3 M3 N4 m4 M4
Вариант 4 96 76 103 85 78 960 91 800 92 127
Задача 4
Рассмотрите случайную выборку Xi из некоторого известного распределения и ответьте на следующие вопросы:
а) найдите оценку параметра A методом моментов, если известно, что выборка сделана из равномерного распределения U(–1;A)
б) найдите оценку методом моментов параметра B, если известно, что выборка сделана из равномерного распределения U(-B;B)
в) найдите оценки методом максимального правдоподобия параметров c и C, если известно, что выборка сделана из равномерного распределения U(c; C);
г) найдите (и сравните) оценки параметра L методом моментов и методом максимального правдоподобия, если известно, что выборка сделана из экспоненциального EL распределения;
д) найдите оценку параметра m методом моментов, если известно, что выборка сделана из нормального распределения N(m, 1)
е) найдите оценки параметров M и S любым известным методом, если известно, что выборка сделана из нормального распределения N(M, S);
ж) постройте гистограмму и полигон по выборке, количество интервалов — K;
ж) в каждом из пунктов (а) — (е) оцените близость данного теоретического распределения к эмпирическому на основе критерия Пирсона; какое из распределений (а) — (е) лучше описывает выборку?
Числовые данные
i 1 2 3 4 5 6 7 8 9 10 K
Вариант 4 0.518 -0.059 -0.349 0.243 0.494 -0.023 -0.278 0.540 -0.679 -0.521 3
Задание 5
По данной выборке Xi выполните следующие вычисления:
а) постройте гистограмму, полигон, выборочную функцию распределения;
б) вычислите выборочные моменты и связанные величины (первый, второй, третий, дисперсию, СКО, эксцесс и коэффициент асимметрии);
в) оцените методом моментов или/и методом максимального правдоподобия по выборке параметры основных непрерывных распределений (равномерное, экспоненциальное, нормальное и пр.), оцените близость оценок теоретических распределений к выборочному; подберите качественное описание выборочного распределения теоретическим;
г) предположив, что выборка получена из нормального распределения, протестируйте гипотезы равенства среднего нулю при неизвестной дисперсии; равенства среднего нулю при дисперсии, равной выборочной;
Числовые данные
I 1
Xi 2
Xi 3
Xi 4
Xi 5
Xi 6
Xi 7
Xi 8
Xi 9
Xi 10
Xi
4 10,46 -8,46 1,38 -17,87 32 0,19 1,29 -0,78 -5,5 -9,95
Задание 6
По выборкам Xi, Yi выполните следующие вычисления:
а) найдите выборочную ковариацию и выборочный коэффициент корреляции;
б) методом наименьших квадратов оцените параметры модели X=aY+b, протестируйте гипотезу {a=0};
в) методом наименьших квадратов оцените параметры модели Y=kX+d, протестируйте гипотезу {k=0};
г) в пунктах (б), (в) найдите и сравните коэффициенты R2;
д) в пунктах (б), (в) протестируйте близость эмпирического распределения остатков моделей к нормальному;
е) каково ожидаемое значение с.в. Y, если известно значение с.в. X? Каков доверительный интервал для Y в этом случае? Постройте график этих зависимостей для выборочных значений Xi и сравните с выборочными значениями Yi.
В партии из N деталей ровно M бракованных. Дайте ответы на следующие вопросы (запишите формулы и сделайте вычисления с подробными объяснениями):
а) какова вероятность того, что наудачу выбранная деталь из партии окажется бракованной?
б) какова вероятность того, что наудачу выбранная деталь из партии окажется НЕ бракованной?
в) какова вероятность того, что из K1 случайно выбранных из партии деталей ровно L1 окажется бракованными?
г) какова вероятность того, что из K2 случайно выбранных из партии деталей не более L2 окажется бракованными?
д) какова вероятность того, что из K3 случайно выбранных из партии деталей не менее L3 окажется НЕ бракованными?
е) из партии выбрано случайно K4 деталей, из них L4 оказалось бракованными; какова вероятность, что больше в выборке нет бракованных деталей?
ж) из партии выбрано K5 деталей, и которых не менее L5 оказалось бракованными; какова вероятность того, что в последующей выборке из K6 деталей бракованных окажется не более L6 (предыдущая выборка в партию не возвращается)?
Числовые данные – Вариант 4
N M K1 L1 K2 L2 K3 L3 K4 L4 K5 L5 K6 L6
158000 14220 1195 161 970 12 97 14 1323 131 16 3 495 9
Задача 2
«Неправильную» монетку (вероятность выпадения «орла» составляет A) подбрасывают N раз. Рассматриваются следующие величины: x — количество выпавших «орлов», y — количество выпавших «решек», z1=x/y, z2=x+y, z3=x/z2. Ответьте на следующие вопросы об этих случайных величинах:
а) опишите распределения с.в. x, y, z1, z2, z3; найдите математические ожидания, вторые моменты, дисперсии;
б) опишите условное распределение с.в. x|y;
в) в процессе подбрасывания на M-том броске оказалось, что уже выпало ровно L «орлов», какова вероятность того, что всего выпадет не более K решек?
г) найдите ковариацию и коэффициент корреляции величин x и y;
д) найдите ковариацию и коэффициент корреляции величин x2 и y;
Числовые данные
A N M L K
Вариант 4 0,67 238 136 88 65
Задача 3
Срок службы электрической лампы имеет показательное распределение с математическим ожиданием L часов. Ответьте на следующие вопросы:
а) какова вероятность того, что лампа прослужит от m1 до M1 часов?
б) какова вероятность того, что прослужившая уже m2 часов лампа прослужит еще не менее M2 часов?
в) какова вероятность того, что средний срок службы для N3 ламп составит не менее M3 часов?
г) какова вероятность того, что для N4 ламп срок службы составит от m4 до M4 часов?
Числовые данные
L m1 M1 m2 M2 N3 M3 N4 m4 M4
Вариант 4 96 76 103 85 78 960 91 800 92 127
Задача 4
Рассмотрите случайную выборку Xi из некоторого известного распределения и ответьте на следующие вопросы:
а) найдите оценку параметра A методом моментов, если известно, что выборка сделана из равномерного распределения U(–1;A)
б) найдите оценку методом моментов параметра B, если известно, что выборка сделана из равномерного распределения U(-B;B)
в) найдите оценки методом максимального правдоподобия параметров c и C, если известно, что выборка сделана из равномерного распределения U(c; C);
г) найдите (и сравните) оценки параметра L методом моментов и методом максимального правдоподобия, если известно, что выборка сделана из экспоненциального EL распределения;
д) найдите оценку параметра m методом моментов, если известно, что выборка сделана из нормального распределения N(m, 1)
е) найдите оценки параметров M и S любым известным методом, если известно, что выборка сделана из нормального распределения N(M, S);
ж) постройте гистограмму и полигон по выборке, количество интервалов — K;
ж) в каждом из пунктов (а) — (е) оцените близость данного теоретического распределения к эмпирическому на основе критерия Пирсона; какое из распределений (а) — (е) лучше описывает выборку?
Числовые данные
i 1 2 3 4 5 6 7 8 9 10 K
Вариант 4 0.518 -0.059 -0.349 0.243 0.494 -0.023 -0.278 0.540 -0.679 -0.521 3
Задание 5
По данной выборке Xi выполните следующие вычисления:
а) постройте гистограмму, полигон, выборочную функцию распределения;
б) вычислите выборочные моменты и связанные величины (первый, второй, третий, дисперсию, СКО, эксцесс и коэффициент асимметрии);
в) оцените методом моментов или/и методом максимального правдоподобия по выборке параметры основных непрерывных распределений (равномерное, экспоненциальное, нормальное и пр.), оцените близость оценок теоретических распределений к выборочному; подберите качественное описание выборочного распределения теоретическим;
г) предположив, что выборка получена из нормального распределения, протестируйте гипотезы равенства среднего нулю при неизвестной дисперсии; равенства среднего нулю при дисперсии, равной выборочной;
Числовые данные
I 1
Xi 2
Xi 3
Xi 4
Xi 5
Xi 6
Xi 7
Xi 8
Xi 9
Xi 10
Xi
4 10,46 -8,46 1,38 -17,87 32 0,19 1,29 -0,78 -5,5 -9,95
Задание 6
По выборкам Xi, Yi выполните следующие вычисления:
а) найдите выборочную ковариацию и выборочный коэффициент корреляции;
б) методом наименьших квадратов оцените параметры модели X=aY+b, протестируйте гипотезу {a=0};
в) методом наименьших квадратов оцените параметры модели Y=kX+d, протестируйте гипотезу {k=0};
г) в пунктах (б), (в) найдите и сравните коэффициенты R2;
д) в пунктах (б), (в) протестируйте близость эмпирического распределения остатков моделей к нормальному;
е) каково ожидаемое значение с.в. Y, если известно значение с.в. X? Каков доверительный интервал для Y в этом случае? Постройте график этих зависимостей для выборочных значений Xi и сравните с выборочными значениями Yi.
Дополнительная информация
Уважаемый студент, дистанционного обучения,
Оценена Ваша работа по предмету: Теория вероятности и математическая статистика (2 часть)
Вид работы: Курсовая работа
Оценка: Отлично
Дата оценки: 17.07.2020
Рецензия:Уважаемый ,
Галкина Марина Юрьевна
Помогу с вашим вариантом, другой работой или дисциплиной.
E-mail: sneroy20@gmail.com
Оценена Ваша работа по предмету: Теория вероятности и математическая статистика (2 часть)
Вид работы: Курсовая работа
Оценка: Отлично
Дата оценки: 17.07.2020
Рецензия:Уважаемый ,
Галкина Марина Юрьевна
Помогу с вашим вариантом, другой работой или дисциплиной.
E-mail: sneroy20@gmail.com
Похожие материалы
Теория вероятностей и математическая статистика. Вариант: №4
holm4enko87
: 14 февраля 2025
Задание 1.Комбинаторика.
Внимание! Под «словом» подразумевается любой набор букв, не обязательно осмысленный.
Сколько 4-х буквенных слов можно составить из букв слова УКУС?
Задание 2.Основные теоремы.
В автопарке имеются автомобили двух марок, всех поровну.
Автомобиль первой марки исправен с вероятностью - 0,8,
второй марки с вероятностью - 0,7.
Найти вероятность того ,что произвольный автомобиль автопарка исправен.
Задание 3.Случайные величины.
Найти математическое ожидание, дисперсию и среднее
150 руб.
Теория вероятностей и математическая статистика. Вариант: №4
ilya2213
: 17 июня 2021
Задание 1.Комбинаторика.
Внимание! Под «словом» подразумевается любой набор букв, не обязательно осмысленный.
Сколько 4-х буквенных слов можно составить из букв слова УКУС?
Задание 2.Основные теоремы.
В автопарке имеются автомобили двух марок, всех поровну.
Автомобиль первой марки исправен с вероятностью - 0,8,
второй марки с вероятностью - 0,7.
Найти вероятность того ,что произвольный автомобиль автопарка исправен.
Задание 3.Случайные величины.
Найти математическое ожидание, дисперсию и среднее
190 руб.
Теория вероятностей и математическая статистика Вариант:4
lotos15
: 17 апреля 2020
Задание 1.Комбинаторика.
Внимание! Под «словом» подразумевается любой набор букв, не обязательно осмысленный.
Сколько 4-х буквенных слов можно составить из букв слова УКУС?
Задание 2.Основные теоремы.
В автопарке имеются автомобили двух марок, всех поровну.
Автомобиль первой марки исправен с вероятностью - 0,8,
второй марки с вероятностью - 0,7.
Найти вероятность того ,что произвольный автомобиль автопарка исправен.
Задание 3.Случайные величины.
Найти математическое ожидание, дисперсию и средн
200 руб.
Курсовая работа по дисциплине: Основы теории вероятностей и математической статистики
antikeks
: 24 января 2013
Курсовая работа
по курсу «Теория вероятностей и математическая статистика»
Вариант 1
Задачи следующие (вкратце):
По теории вероятностей:
В партии из 103000 деталей ровно 5150 бракованных...
«Неправильную» монетку (вероятность выпадения «орла» составляет 0,52) подбрасывают 166 раз...
Срок службы электрической лампы имеет показательное распределение с математическим ожиданием 89 часов...
Рассмотрите случайную выборку Xi из некоторого известного распределения
1 2 3 4 5 6 7 8 9 10 K
0,457 0,137 -0
600 руб.
Курсовая работа по дисциплине: Теория вероятности и математическая статистика (2 часть). Вариант №8
IT-STUDHELP
: 17 июля 2020
Задача 1
В партии из N деталей ровно M бракованных. Дайте ответы на следующие вопросы (запишите формулы и сделайте вычисления с подробными объяснениями):
а) какова вероятность того, что наудачу выбранная деталь из партии окажется бракованной?
б) какова вероятность того, что наудачу выбранная деталь из партии окажется НЕ бракованной?
в) какова вероятность того, что из K1 случайно выбранных из партии деталей ровно L1 окажется бракованными?
г) какова вероятность того, что из K2 случайно выбранных и
900 руб.
Теория вероятностей и математическая статистика. 4 вариант
Semenovaksenija090800
: 1 мая 2020
1. Вероятность выхода из строя каждого из 4-х блоков равна 0,8. Найти вероятность разрыва цепи.
2. Цель, по которой ведется стрельба, может находиться на первом участке c вероятностью 0,4, на втором с вероятностью 0,5, на третьем – с вероятностью 0,1. Находящаяся на первом участке цель поражается с вероятностью 0,8, на втором – с вероятностью 0,6, на третьем – с вероятностью 0,2. В результате стрельбы цель оказалось поражена. Какова вероятность, что она находилась на первом участке?
3. В партии
100 руб.
Теория вероятностей и математическая статистика
Dirol340
: 11 декабря 2022
Задание 1.
Сколько 4-х буквенных слов можно составить из букв слова УКУС?
Решение: Переставить буквы в слове можно 4! Способами. В слове 2 одинаковые буквы: У – две буквы. Если менять местами эти буквы в конкретной расстановке, то слова будут получаться одинаковые. Следовательно, общее число слов, составленных перестановкой букв из слова УКУС будет равно:
Задание 2.
В автопарке имеются автомобили трех марок, всех поровну. Автомобиль первой марки исправен с вероятностью 0,8, второй марки с
250 руб.
Теория вероятностей и математическая статистика
viktoriya199000
: 16 мая 2022
Задача выполнена в ручную, на бумаге.
50 руб.
Другие работы
Проект рибопромислового пристрою зі снюрреводом
SerFACE
: 6 октября 2015
Креслення:
Загальне розташування
Розрізи
Вантажний пристрій
Рибопромисловий пристрій для лову снюрреводом
Схема снюрреводу і лову
Схема замету снюрревода
Графіки залежності допустимої вантажопідйомності вантажопідйомного
пристрою зі спаренними стрілами від відстані по горизонталі точки
з єднання шкентелей від вертикалі, яка опущена з ноку люкової стріли
Графіки залежності зусиль в топентах люкової ( ) та береговой стріли,
у контрвідтяжках
від відстані по горизонталі точки з єднання шкен
50 руб.
Гидравлика и нефтегазовая гидромеханика ТОГУ Задача 27 Вариант 4
Z24
: 28 ноября 2025
Вода из бака по трубопроводу длиной l3 и диаметром d3 поступает в разветвленный трубопровод, одна из ветвей которого изменяет диаметр d1 и длину l1, соответственно d2, l2. Определить расход воды, поступающей в точки 1 и 2, если напор равен H (рис. 23).
280 руб.
Паронимия и синонимия
GnobYTEL
: 24 июля 2013
Паронимия (от греч. para — ‘около, рядом, возле’ и onima — ‘имя’) — это явление частичного звукового сходства слов при частичном или (реже) полном различии значений: здравица — здравница, скрытый — скрытный, представился — преставился, поиск — происк.
Существует несколько трактовок термина «паронимия». Паронимы в «узком» смысле — близкие по звучанию родственные слова. При «широком» понимании паронимы определяются как слова, в какой-то мере сходно звучащие, но имеющие разное значение (Колесников
Контрольная работа по дисциплине "Электротехника и электроника". Вариант 10
holm4enko87
: 14 ноября 2024
Задача 1.
По выходным характеристикам полевого транзистора (приложение 2, см. стр. 6-12) построить передаточную характеристику при указанном напряжении стока. Определить дифференциальные параметры S, Ri, m полевого транзистора и построить их зависимости от напряжения на затворе.
Сделать выводы о зависимости параметров транзистора от режима работы.
Задача 2.
Используя характеристики заданного биполярного (приложение 2, см. стр. 12-19) транзистора определить h-параметры биполярного транзистора и п
70 руб.