Курсовая работа по дисциплине: Теория вероятности и математическая статистика (2-я часть). Вариант №4

Состав работы

material.view.file_icon 6F7AEBC1-7B20-4E99-A3B2-A6BAED617663.docx
Работа представляет собой файл, который можно открыть в программе:
  • Microsoft Word

Описание

Задача 1
В партии из N деталей ровно M бракованных. Дайте ответы на следующие вопросы (запишите формулы и сделайте вычисления с подробными объяснениями):
а) какова вероятность того, что наудачу выбранная деталь из партии окажется бракованной?
б) какова вероятность того, что наудачу выбранная деталь из партии окажется НЕ бракованной?
в) какова вероятность того, что из K1 случайно выбранных из партии деталей ровно L1 окажется бракованными?
г) какова вероятность того, что из K2 случайно выбранных из партии деталей не более L2 окажется бракованными?
д) какова вероятность того, что из K3 случайно выбранных из партии деталей не менее L3 окажется НЕ бракованными?
е) из партии выбрано случайно K4 деталей, из них L4 оказалось бракованными; какова вероятность, что больше в выборке нет бракованных деталей?
ж) из партии выбрано K5 деталей, и которых не менее L5 оказалось бракованными; какова вероятность того, что в последующей выборке из K6 деталей бракованных окажется не более L6 (предыдущая выборка в партию не возвращается)?
Числовые данные – Вариант 4
N M K1 L1 K2 L2 K3 L3 K4 L4 K5 L5 K6 L6
158000 14220 1195 161 970 12 97 14 1323 131 16 3 495 9


Задача 2
«Неправильную» монетку (вероятность выпадения «орла» составляет A) подбрасывают N раз. Рассматриваются следующие величины: x — количество выпавших «орлов», y — количество выпавших «решек», z1=x/y, z2=x+y, z3=x/z2. Ответьте на следующие вопросы об этих случайных величинах: 
а) опишите распределения с.в. x, y, z1, z2, z3; найдите математические ожидания, вторые моменты, дисперсии;
б) опишите условное распределение с.в. x|y;
в) в процессе подбрасывания на M-том броске оказалось, что уже выпало ровно L «орлов», какова вероятность того, что всего выпадет не более K решек?
г) найдите ковариацию и коэффициент корреляции величин x и y;
д) найдите ковариацию и коэффициент корреляции величин x2 и y;
Числовые данные
 A N M L K
Вариант 4 0,67 238 136 88 65


Задача 3
Срок службы электрической лампы имеет показательное распределение с математическим ожиданием L часов. Ответьте на следующие вопросы:
а) какова вероятность того, что лампа прослужит от m1 до M1 часов?
б) какова вероятность того, что прослужившая уже m2 часов лампа прослужит еще не менее M2 часов?
в) какова вероятность того, что средний срок службы для N3 ламп составит не менее M3 часов?
г) какова вероятность того, что для N4 ламп срок службы составит от m4 до M4 часов?
Числовые данные
 L m1 M1 m2 M2 N3 M3 N4 m4 M4
Вариант 4 96 76 103 85 78 960 91 800 92 127


Задача 4
Рассмотрите случайную выборку Xi из некоторого известного распределения и ответьте на следующие вопросы:
а) найдите оценку параметра A методом моментов, если известно, что выборка сделана из равномерного распределения U(–1;A)
б) найдите оценку методом моментов параметра B, если известно, что выборка сделана из равномерного распределения U(-B;B)
в) найдите оценки методом максимального правдоподобия параметров c и C, если известно, что выборка сделана из равномерного распределения U(c; C);
г) найдите (и сравните) оценки параметра L методом моментов и методом максимального правдоподобия, если известно, что выборка сделана из экспоненциального EL распределения;
д) найдите оценку параметра m методом моментов, если известно, что выборка сделана из нормального распределения N(m, 1)
е) найдите оценки параметров M и S любым известным методом, если известно, что выборка сделана из нормального распределения N(M, S);
ж) постройте гистограмму и полигон по выборке, количество интервалов — K;
ж) в каждом из пунктов (а) — (е) оцените близость данного теоретического распределения к эмпирическому на основе критерия Пирсона; какое из распределений (а) — (е) лучше описывает выборку?
Числовые данные
i 1 2 3 4 5 6 7 8 9 10 K
Вариант 4 0.518 -0.059 -0.349 0.243 0.494 -0.023 -0.278 0.540 -0.679 -0.521 3


Задание 5
По данной выборке Xi выполните следующие вычисления:
а) постройте гистограмму, полигон, выборочную функцию распределения;
б) вычислите выборочные моменты и связанные величины (первый, второй, третий, дисперсию, СКО, эксцесс и коэффициент асимметрии);
в) оцените методом моментов или/и методом максимального правдоподобия по выборке параметры основных непрерывных распределений (равномерное, экспоненциальное, нормальное и пр.), оцените близость оценок теоретических распределений к выборочному; подберите качественное описание выборочного распределения теоретическим;
г) предположив, что выборка получена из нормального распределения, протестируйте гипотезы равенства среднего нулю при неизвестной дисперсии; равенства среднего нулю при дисперсии, равной выборочной;
Числовые данные
I 1
Xi 2
Xi 3
Xi 4
Xi 5
Xi 6
Xi 7
Xi 8
Xi 9
Xi 10
Xi
4 10,46 -8,46 1,38 -17,87 32 0,19 1,29 -0,78 -5,5 -9,95


Задание 6
По выборкам Xi, Yi выполните следующие вычисления:
а) найдите выборочную ковариацию и выборочный коэффициент корреляции;
б) методом наименьших квадратов оцените параметры модели X=aY+b, протестируйте гипотезу {a=0};
в) методом наименьших квадратов оцените параметры модели Y=kX+d, протестируйте гипотезу {k=0};
г) в пунктах (б), (в) найдите и сравните коэффициенты R2;
д) в пунктах (б), (в) протестируйте близость эмпирического распределения остатков моделей к нормальному;
е) каково ожидаемое значение с.в. Y, если известно значение с.в. X? Каков доверительный интервал для Y в этом случае? Постройте график этих зависимостей для выборочных значений Xi и сравните с выборочными значениями Yi.

Дополнительная информация

Уважаемый студент, дистанционного обучения,
Оценена Ваша работа по предмету: Теория вероятности и математическая статистика (2 часть)
Вид работы: Курсовая работа
Оценка: Отлично
Дата оценки: 17.07.2020
Рецензия:Уважаемый ,

Галкина Марина Юрьевна

Помогу с вашим вариантом, другой работой или дисциплиной.
E-mail: sneroy20@gmail.com
Теория вероятностей и математическая статистика. Вариант: №4
Задание 1.Комбинаторика. Внимание! Под «словом» подразумевается любой набор букв, не обязательно осмысленный. Сколько 4-х буквенных слов можно составить из букв слова УКУС? Задание 2.Основные теоремы. В автопарке имеются автомобили двух марок, всех поровну. Автомобиль первой марки исправен с вероятностью - 0,8, второй марки с вероятностью - 0,7. Найти вероятность того ,что произвольный автомобиль автопарка исправен. Задание 3.Случайные величины. Найти математическое ожидание, дисперсию и среднее
User holm4enko87 : 14 февраля 2025
150 руб.
promo
Теория вероятностей и математическая статистика. Вариант: №4
Задание 1.Комбинаторика. Внимание! Под «словом» подразумевается любой набор букв, не обязательно осмысленный. Сколько 4-х буквенных слов можно составить из букв слова УКУС? Задание 2.Основные теоремы. В автопарке имеются автомобили двух марок, всех поровну. Автомобиль первой марки исправен с вероятностью - 0,8, второй марки с вероятностью - 0,7. Найти вероятность того ,что произвольный автомобиль автопарка исправен. Задание 3.Случайные величины. Найти математическое ожидание, дисперсию и среднее
User ilya2213 : 17 июня 2021
190 руб.
Теория вероятностей и математическая статистика. Вариант: №4
Теория вероятностей и математическая статистика Вариант:4
Задание 1.Комбинаторика. Внимание! Под «словом» подразумевается любой набор букв, не обязательно осмысленный. Сколько 4-х буквенных слов можно составить из букв слова УКУС? Задание 2.Основные теоремы. В автопарке имеются автомобили двух марок, всех поровну. Автомобиль первой марки исправен с вероятностью - 0,8, второй марки с вероятностью - 0,7. Найти вероятность того ,что произвольный автомобиль автопарка исправен. Задание 3.Случайные величины. Найти математическое ожидание, дисперсию и средн
User lotos15 : 17 апреля 2020
200 руб.
Курсовая работа по дисциплине: Основы теории вероятностей и математической статистики
Курсовая работа по курсу «Теория вероятностей и математическая статистика» Вариант 1 Задачи следующие (вкратце): По теории вероятностей: В партии из 103000 деталей ровно 5150 бракованных... «Неправильную» монетку (вероятность выпадения «орла» составляет 0,52) подбрасывают 166 раз... Срок службы электрической лампы имеет показательное распределение с математическим ожиданием 89 часов... Рассмотрите случайную выборку Xi из некоторого известного распределения 1 2 3 4 5 6 7 8 9 10 K 0,457 0,137 -0
User antikeks : 24 января 2013
600 руб.
Курсовая работа по дисциплине: Теория вероятности и математическая статистика (2 часть). Вариант №8
Задача 1 В партии из N деталей ровно M бракованных. Дайте ответы на следующие вопросы (запишите формулы и сделайте вычисления с подробными объяснениями): а) какова вероятность того, что наудачу выбранная деталь из партии окажется бракованной? б) какова вероятность того, что наудачу выбранная деталь из партии окажется НЕ бракованной? в) какова вероятность того, что из K1 случайно выбранных из партии деталей ровно L1 окажется бракованными? г) какова вероятность того, что из K2 случайно выбранных и
User IT-STUDHELP : 17 июля 2020
900 руб.
promo
Теория вероятностей и математическая статистика. 4 вариант
1. Вероятность выхода из строя каждого из 4-х блоков равна 0,8. Найти вероятность разрыва цепи. 2. Цель, по которой ведется стрельба, может находиться на первом участке c вероятностью 0,4, на втором с вероятностью 0,5, на третьем – с вероятностью 0,1. Находящаяся на первом участке цель поражается с вероятностью 0,8, на втором – с вероятностью 0,6, на третьем – с вероятностью 0,2. В результате стрельбы цель оказалось поражена. Какова вероятность, что она находилась на первом участке? 3. В партии
User Semenovaksenija090800 : 1 мая 2020
100 руб.
Теория вероятностей и математическая статистика
Задание 1. Сколько 4-х буквенных слов можно составить из букв слова УКУС? Решение: Переставить буквы в слове можно 4! Способами. В слове 2 одинаковые буквы: У – две буквы. Если менять местами эти буквы в конкретной расстановке, то слова будут получаться одинаковые. Следовательно, общее число слов, составленных перестановкой букв из слова УКУС будет равно: Задание 2. В автопарке имеются автомобили трех марок, всех поровну. Автомобиль первой марки исправен с вероятностью 0,8, второй марки с
User Dirol340 : 11 декабря 2022
250 руб.
Информатика Экзаменационный билет
Билет № 13 1. Перевести число 1001101,10011 из 2-й в 8-ю систему счисления. 2. Книга имеет 200 страниц, на странице 42 строка по 52 символа в строке. Каков информационный объём книги (в килобайтах)? В скольких книгах будет содержаться 1 Тб? 3. Сложить числа а= 98 и b=35, если под запись знаковых чисел выделяется 8-ми разрядная ячейка памяти. Результат перевести в десятичный вид.
User NeoN : 8 марта 2015
350 руб.
Линейная алгебра, 1 курс, 1 семестр, 1 вариант
Задача 1. Дана система трех линейных уравнений. Найти решение ее двумя способами: методом Крамера и методом Гаусса. 3x+2y+z=5 2x+3y+z=1 2x+y+3z=11 Задача 2. Даны координаты вершин пирамиды А1А2А3А4. Найти: 1. длину ребра А1А2; 2. угол между ребрами А1А2 и А1А4; 3. площадь грани А1А2А3; 4. уравнение плоскости А1А2А3. 5. объём пирамиды А1А2А3А4.
User ДО Сибгути : 18 марта 2013
45 руб.
promo
Ответы Синергия. Иностранный язык в сфере юриспруденции. Тест 2021
1. Contracts for the sale of goods include … · agreements to sell · contracts of bailment · contracts for hire of goods 2. The power to order that a merger shall not go ahead lies with... · the Monopolies and Mergers Commission · the Director General of Fair Trading · the Secretary of State 3. A shareholder of a public company can sell his shares freely... · if other shareholders agree · if majority shareholder gives his consent · if the shares are dealt with on the Stock Exchange
User Nogav : 24 апреля 2021
200 руб.
Ответы Синергия. Иностранный язык в сфере юриспруденции. Тест 2021
Применение методов анализа информационных систем
Введение 4 1 Swot-анализ системы управления очередями 5 2 Метод морфологического ящика СУО 9 3 Метод анализа иерархий СУО 12 4 Синтез и анализ глобальных приоритетов альтернатив выбора 22 Выводы 23 5 Системный анализ объекта в условиях неопределенности с использованием понятия функции полезности 24 5.1 Постановка задачи системного анализа 24 5.2 Обоснование значений функций полезности и вероятностей 25 5.3 Теоретические расчеты 28 5.4 Результаты и вывод 34 Список используемых источников 35
User Кач : 6 июня 2014
15 руб.
up Наверх