Лабораторная работа по дисциплине: Физика (часть 2-я) Вариант: №1
Состав работы
|
|
|
|
Работа представляет собой rar архив с файлами (распаковать онлайн), которые открываются в программах:
- Microsoft Word
Описание
1. Цель работы
Исследовать явление дифракции электромагнитных волн. С помощью дифракционной решетки проходящего света измерить длины электромагнитных волн видимого диапазона
2. Основные теоретические сведения
Дифракцией называется совокупность явлений, наблюдаемых при распространении света в среде с резкими неоднородностями ( например, вблизи границ непрозрачных тел, сквозь малые отверстия и т.п.) и связанных с отклонениями от законов геометрической оптики. В частности, дифракция приводит к огибанию световыми волнами препятствий и проникновению света в область геометрической тени. Явление дифракции заключается в перераспределении светового потока в результате суперпозиции волн, возбуждаемых когерентными источниками, расположенными непрерывно.
Дифракция световых волн, являющихся частным случаем волн электромагнитных, может быть объяснена с помощью принципа Гюйгенса- Френеля. Согласно этому принципу, каждая точка среды, до которой дошел волновой фронт, может рассматриваться как точечный излучатель вторичной сферической волны, причем излучатели когерентны между собой. Огибающая вторичных сферических волн определяет форму волнового фронта в следующий момент времени. Угол j, на который отклоняется волна от первоначального направления при дифракции, называется углом дифракции.
Наблюдение дифракции осуществляется обычно по следующей схеме.
На пути световой волны, распространяющейся от некоторого источника, помещается непрозрачная преграда, закрывающая часть волновой поверхности световой волны. За преградой располагается экран, на котором возникает дифракционная картина.
Различают два вида дифракции. Если источник света и экран расположены от препятствия настолько далеко, что лучи, падающие на препятствие, и лучи, идущие в точку наблюдения на экране, образуют практически параллельные пучки, то говорят о дифракции Фраунгофера или дифракции в параллельных лучах. В противном случае говорят о дифракции Френеля. В данной лабораторной работе для исследования дифракции Фраунгофера используется дифракционная решетка проходящего света, которая представляет собой совокупность узких параллельных щелей, расположенных в одной плоскости (рис.1). Ширина всех щелей одинакова и равна b, а расстояние между щелями равно a. Величину d=a+b называют периодом (постоянной) дифракционной решетки. Если полное число щелей решетки равно N, то длина дифракционной решетки равна r=Nd. Обычно, длина щелей много больше периода решетки, а ширина щели b3 l .
Дифракционные решетки являются главной частью дифракционных спектрометров- приборов, предназначенных для измерения длин волн электромагнитного излучения, проходящего сквозь них. Найдем аналитическое выражение для определения длины волны света с помощью дифракционной решетки. Пусть когерентные волны 1 и 2 падают на решетку нормально к ее поверхности и дифрагируют под углом j (рис.2). При наблюдении в параллельных лучах под углом j между лучами соседних щелей возникает одна и та же разность хода d •sin j . Пройдя дифракционную решетку, волны интерферируют в плоскости экрана. Если в точке наблюдения М наблюдается интерференционный максимум, то разность оптических длин путей 1 и 2 должна быть равна целому числу длин волн:
Dx= ml m=0,1,21⁄4 (1)
Таким образом получаем:
m= 0,1,2,1⁄4 (2)
Очевидно, что две любые другие волны, аналогичные волнам 1 и 2 и проходящие на расстоянии d друг от друга, дадут вклад в формирование максимума в точке М, который называется главным максимумом. Условие m=0 в формуле (2) соотвктствует значению j =0 и определяет интерференционное условие для центрального максимума, формируемого недифрагированными волнами, приходящими в центр экрана в одной фазе. При дифракции лучи могут отклоняться от первоначального направления распространения как влево, так и вправо. Отсюда следует, что дифракционный спектр должен быть симметричен относительно центрального максимума. Обозначим углы дифракции j для максимумов, расположенных слева от центрального, положительными, а справа- отрицательными. Тогда окончательное выражение для главных максимумов в дифракционном спектре:
dsinj= ± ml m= 0,1,2,3,1⁄4 (3)
Значения m называют порядком дифракционного максимума. Главные максимумы различных порядков разделены в дифракционном спектре интерференционными (главными) минимумами, в которых волны складываются в противофазе и гасят друг друга попарно. Наряду с главными максимумами и минимумами в дифракционном спектре присутствуют добавочные максимумы и минимумами, возникающие при интерференции дифрагированных волн, проходящих сквозь дифракционную решетку на расстояниях d1> d или d2< d одна от другой.
Если освещать решетку белым светом, в максимумах каждого порядка должны наблюдаться спектральные линии различных цветов от фиолетового до красного. В соответствии с формулой (3) линия красного цвета должна располагаться дальше от центра дифракционной картины по сравнению с линией фиолетового цвета в максимуме любого порядка. В данной работе измеряются дины волн красного и фиолетового цветов.
Для наблюдения максимумов и минимумов параллельные лучи обычно собирают (фокусируют) линзой, а экран располагают в ее фокальной плоскости. Однако линза не обязательна. Ведь и без нее в точку наблюдения М приходят все лучи от решетки. Если экран расположен достаточно далеко, то сходящиеся лучи, приходящие в точку М, почти параллельны, и разность хода между ними почти такая же, как и между параллельными. В действительности она несколько больше, но если различие в разности хода много меньше, чем l / 2 , то оно не вносит существенных поправок в результат интерференции.
3. Описание лабораторной установки
Установка состоит из источника света “И”, щели “Щ”, линзы “Л1”, дифракционной решетки “Р”, линзы “Л2” , экрана “Э” и светофильтра “Ф” (рис.3). Щель служит для формирования спектральных линий, разрешенных между собой и придания им формы, подобной форме щели. Линза “Л1” предназначена для устранения расходимости светового пучка и получения резкого изображения спектра на экране. Линза “Л2” фокусирует параллельные лучи, идущие от решетки. Экран расположен в фокальной плоскости линзы “Л2”.
Для определения длины волны используется формула (3).
При этом поступают следующим образом. На экране измеряют расстояние l от центра дифракционной картины до центра максимума порядка m. Это расстояние делят на фокусное расстояние линзы “Л2”. Полученное отношение равно тангенсу угла дифракции j. Отсюда
(4)
Для выделения монохроматического излучения используют светофильтр.
4. Задание
Выбрать линзу “Л2”, задав фокусное расстояние L от 25 до 35 см.
Получить интерференционную картину на экране.
Установить красный светофильтр. Измерить расстояние l1 от середины максимума первого порядка до середины центрального максимума по шкале экрана. Записать полученное значение в отчет по лабораторной работе.
Повторить измерения для максимума второго порядка.
Установить фиолетовый светофильтр. Повторить п.2 и п.3 для фиолетового света.
По формуле (4) рассчитать углы дифракции первого и второго порядков для красного и фиолетового цвета.
По формуле (3) рассчитать длины волн фиолетового и красного цвета. Период решетки принимается равным 5мкм. Окончательные значения длин волн вычислить как средние арифметические по максимумам первого и второго порядка одного и того же цвета. Внести полученные значения длин волн в отчет по лабораторной работе.
Сделать основные выводы по проделанной работе.
5. Контрольные вопросы
Максимум какого наибольшего порядка может наблюдаться на данной дифракционной решетке?
Дайте понятие дифракции. В чем сущность принципа Гюйгенса- Френеля?
Расскажите об устройстве и назначении дифракционной решетки проходящего света.
Объясните порядок чередования цветов в спектре, полученном в п.2 Задания.
Исследовать явление дифракции электромагнитных волн. С помощью дифракционной решетки проходящего света измерить длины электромагнитных волн видимого диапазона
2. Основные теоретические сведения
Дифракцией называется совокупность явлений, наблюдаемых при распространении света в среде с резкими неоднородностями ( например, вблизи границ непрозрачных тел, сквозь малые отверстия и т.п.) и связанных с отклонениями от законов геометрической оптики. В частности, дифракция приводит к огибанию световыми волнами препятствий и проникновению света в область геометрической тени. Явление дифракции заключается в перераспределении светового потока в результате суперпозиции волн, возбуждаемых когерентными источниками, расположенными непрерывно.
Дифракция световых волн, являющихся частным случаем волн электромагнитных, может быть объяснена с помощью принципа Гюйгенса- Френеля. Согласно этому принципу, каждая точка среды, до которой дошел волновой фронт, может рассматриваться как точечный излучатель вторичной сферической волны, причем излучатели когерентны между собой. Огибающая вторичных сферических волн определяет форму волнового фронта в следующий момент времени. Угол j, на который отклоняется волна от первоначального направления при дифракции, называется углом дифракции.
Наблюдение дифракции осуществляется обычно по следующей схеме.
На пути световой волны, распространяющейся от некоторого источника, помещается непрозрачная преграда, закрывающая часть волновой поверхности световой волны. За преградой располагается экран, на котором возникает дифракционная картина.
Различают два вида дифракции. Если источник света и экран расположены от препятствия настолько далеко, что лучи, падающие на препятствие, и лучи, идущие в точку наблюдения на экране, образуют практически параллельные пучки, то говорят о дифракции Фраунгофера или дифракции в параллельных лучах. В противном случае говорят о дифракции Френеля. В данной лабораторной работе для исследования дифракции Фраунгофера используется дифракционная решетка проходящего света, которая представляет собой совокупность узких параллельных щелей, расположенных в одной плоскости (рис.1). Ширина всех щелей одинакова и равна b, а расстояние между щелями равно a. Величину d=a+b называют периодом (постоянной) дифракционной решетки. Если полное число щелей решетки равно N, то длина дифракционной решетки равна r=Nd. Обычно, длина щелей много больше периода решетки, а ширина щели b3 l .
Дифракционные решетки являются главной частью дифракционных спектрометров- приборов, предназначенных для измерения длин волн электромагнитного излучения, проходящего сквозь них. Найдем аналитическое выражение для определения длины волны света с помощью дифракционной решетки. Пусть когерентные волны 1 и 2 падают на решетку нормально к ее поверхности и дифрагируют под углом j (рис.2). При наблюдении в параллельных лучах под углом j между лучами соседних щелей возникает одна и та же разность хода d •sin j . Пройдя дифракционную решетку, волны интерферируют в плоскости экрана. Если в точке наблюдения М наблюдается интерференционный максимум, то разность оптических длин путей 1 и 2 должна быть равна целому числу длин волн:
Dx= ml m=0,1,21⁄4 (1)
Таким образом получаем:
m= 0,1,2,1⁄4 (2)
Очевидно, что две любые другие волны, аналогичные волнам 1 и 2 и проходящие на расстоянии d друг от друга, дадут вклад в формирование максимума в точке М, который называется главным максимумом. Условие m=0 в формуле (2) соотвктствует значению j =0 и определяет интерференционное условие для центрального максимума, формируемого недифрагированными волнами, приходящими в центр экрана в одной фазе. При дифракции лучи могут отклоняться от первоначального направления распространения как влево, так и вправо. Отсюда следует, что дифракционный спектр должен быть симметричен относительно центрального максимума. Обозначим углы дифракции j для максимумов, расположенных слева от центрального, положительными, а справа- отрицательными. Тогда окончательное выражение для главных максимумов в дифракционном спектре:
dsinj= ± ml m= 0,1,2,3,1⁄4 (3)
Значения m называют порядком дифракционного максимума. Главные максимумы различных порядков разделены в дифракционном спектре интерференционными (главными) минимумами, в которых волны складываются в противофазе и гасят друг друга попарно. Наряду с главными максимумами и минимумами в дифракционном спектре присутствуют добавочные максимумы и минимумами, возникающие при интерференции дифрагированных волн, проходящих сквозь дифракционную решетку на расстояниях d1> d или d2< d одна от другой.
Если освещать решетку белым светом, в максимумах каждого порядка должны наблюдаться спектральные линии различных цветов от фиолетового до красного. В соответствии с формулой (3) линия красного цвета должна располагаться дальше от центра дифракционной картины по сравнению с линией фиолетового цвета в максимуме любого порядка. В данной работе измеряются дины волн красного и фиолетового цветов.
Для наблюдения максимумов и минимумов параллельные лучи обычно собирают (фокусируют) линзой, а экран располагают в ее фокальной плоскости. Однако линза не обязательна. Ведь и без нее в точку наблюдения М приходят все лучи от решетки. Если экран расположен достаточно далеко, то сходящиеся лучи, приходящие в точку М, почти параллельны, и разность хода между ними почти такая же, как и между параллельными. В действительности она несколько больше, но если различие в разности хода много меньше, чем l / 2 , то оно не вносит существенных поправок в результат интерференции.
3. Описание лабораторной установки
Установка состоит из источника света “И”, щели “Щ”, линзы “Л1”, дифракционной решетки “Р”, линзы “Л2” , экрана “Э” и светофильтра “Ф” (рис.3). Щель служит для формирования спектральных линий, разрешенных между собой и придания им формы, подобной форме щели. Линза “Л1” предназначена для устранения расходимости светового пучка и получения резкого изображения спектра на экране. Линза “Л2” фокусирует параллельные лучи, идущие от решетки. Экран расположен в фокальной плоскости линзы “Л2”.
Для определения длины волны используется формула (3).
При этом поступают следующим образом. На экране измеряют расстояние l от центра дифракционной картины до центра максимума порядка m. Это расстояние делят на фокусное расстояние линзы “Л2”. Полученное отношение равно тангенсу угла дифракции j. Отсюда
(4)
Для выделения монохроматического излучения используют светофильтр.
4. Задание
Выбрать линзу “Л2”, задав фокусное расстояние L от 25 до 35 см.
Получить интерференционную картину на экране.
Установить красный светофильтр. Измерить расстояние l1 от середины максимума первого порядка до середины центрального максимума по шкале экрана. Записать полученное значение в отчет по лабораторной работе.
Повторить измерения для максимума второго порядка.
Установить фиолетовый светофильтр. Повторить п.2 и п.3 для фиолетового света.
По формуле (4) рассчитать углы дифракции первого и второго порядков для красного и фиолетового цвета.
По формуле (3) рассчитать длины волн фиолетового и красного цвета. Период решетки принимается равным 5мкм. Окончательные значения длин волн вычислить как средние арифметические по максимумам первого и второго порядка одного и того же цвета. Внести полученные значения длин волн в отчет по лабораторной работе.
Сделать основные выводы по проделанной работе.
5. Контрольные вопросы
Максимум какого наибольшего порядка может наблюдаться на данной дифракционной решетке?
Дайте понятие дифракции. В чем сущность принципа Гюйгенса- Френеля?
Расскажите об устройстве и назначении дифракционной решетки проходящего света.
Объясните порядок чередования цветов в спектре, полученном в п.2 Задания.
Дополнительная информация
2021
Сибирский Государственный Университет Телекоммуникаций и Информатики
Проверил: Моргачев
Сибирский Государственный Университет Телекоммуникаций и Информатики
Проверил: Моргачев
Похожие материалы
Лабораторная работа По дисциплине: Физика ( часть 2). Вариант 6.
oly
: 18 апреля 2018
Лабораторная работа По дисциплине: Физика ( часть 2). Вариант 6.
Цель работы:
Исследовать явление дифракции электромагнитных волн. С помощью дифракционной решетки проходящего света измерить длины электромагнитных волн видимого диапазона.
Все замечания исправлены!
100 руб.
ДО СибГУТИ Лабораторная работа по дисциплине «Физика (часть 2)». Вариант №9 (2023)
Mijfghs
: 30 августа 2025
Определение длины электромагнитной волны методом дифракции Фраунгофера
Задание
1. Выбрать линзу “Л2”, задав фокусное расстояние L от 25 до 35 см.
2. Получить интерференционную картину на экране.
3. Установить красный светофильтр. Измерить расстояние l1 от середины максимума первого порядка до середины центрального максимума по шкале экрана. Записать полученное значение в отчет по лабораторной работе.
4. Повторить измерения для максимума второго порядка.
5. Установить фиолетовый светофильтр. Пов
48 руб.
Лабораторная работа 2 по дисциплине «Физика (часть 2)» Вариант 6
MehVV
: 31 октября 2025
Цель работы
Изучить зависимость электропроводности полупроводникового образца от температуры. Определить ширину запрещенной зоны
300 руб.
Лабораторная работа 1 по дисциплине «Физика (часть 2)» Вариант 6
MehVV
: 31 октября 2025
Цель работы
Исследовать явление дифракции электромагнитных волн. С помощью дифракционной решетки проходящего света измерить длины электромагнитных волн видимого диапазона
300 руб.
Лабораторная работа № 7.3 по дисциплине: Физика (часть 2). Вариант 6.
Alexbur1971
: 10 октября 2020
Лабораторная работа 7.3
Определение длины электромагнитной волны методом дифракции Фраунгофера
1. Цель работы
Исследовать явление дифракции электромагнитных волн. С помощью дифракционной решетки проходящего света измерить длины электромагнитных волн видимого диапазона
Контрольные вопросы
1. Максимум какого наибольшего порядка может наблюдаться на данной дифракционной решетке?
2. Дайте понятие дифракции. В чем сущность принципа Гюйгенса-Френеля?
3. Расскажите об устройстве и назначении дифракцион
250 руб.
Лабораторные работы 1,2 по дисциплине: Физика (часть 2). Вариант 7. СИБГУТИ
Kuki
: 28 сентября 2023
Лабораторная работа №1
«Определение длины электромагнитной волны методом дифракции Фраунгофера»
Цель работы:
Исследовать явление дифракции электромагнитных волн. С помощью дифракционной решетки проходящего света измерить длины электромагнитных волн видимого диапазона.
Задание:
1. Выбрать линзу “Л2”, задав фокусное расстояние L от 25 до 35 см.
2. Получить интерференционную картину на экране.
3. Установить красный светофильтр. Измерить расстояние l1 от середины максимума первого порядка до серед
80 руб.
Лабораторная работа №7.3 По дисциплине: Физика (часть 2) вариант 06 2019
rusyyaaaa
: 23 июня 2019
Определение длины электромагнитной волны методом дифракции Фраунгофера
1. Цель работы: Исследовать явление дифракции электромагнитных волн. С помощью дифракционной решетки проходящего света измерить длины электромагнитных волн видимого диапазона.
2. Основные теоретические сведения
Дифракцией называется совокупность явлений, наблюдаемых при распространении света в среде с резкими неоднород
150 руб.
Физика. часть 2-я
Vladimir54
: 23 января 2020
Лабораторная работа 7.3
Определение длины электромагнитной волны методом дифракции Фраунгофера
1. Выбрать линзу “Л2”, задав фокусное расстояние L от 25 до 35 см.
2. Получить интерференционную картину на экране.
3. Установить красный светофильтр. Измерить расстояние l1 от середины максимума первого порядка до середины центрального максимума по шкале экрана. Записать полученное значение в отчет по лабораторной работе.
4. Повторить измерения для максимума второго порядка.
5. Установить фиолетовый
250 руб.
Другие работы
Методы прогнозирования валютных курсов
bikovka96
: 21 марта 2021
Задача 1.
Дано:
01 октября 2013 года компания Дельта продала оборудование покупателю на общую сумму 500 тыс. руб. Дельта выставила счет покупателю на сумму 500 тыс. руб., которую покупатель уплатил 15 октября 2013 г. Условия продажи включали договоренность о том, что Дельта будет обслуживать и содержать в исправности оборудование в течение 4-летнего периода с 01 октября 2013 г.
Обычная продажная цена оборудования без договора сервисного обслуживания составляла 450 тыс. руб.
Ежегодная стоимость
250 руб.
Зачёт по дисциплине "Экология". 4-й семестр. Билет № 8
mastar
: 20 мая 2012
Билет№8
1. Биоценоз и экологическая система. Свойства экологической системы,пищевые связи. Приведите примеры.
2. Нормативы качества окружающей природной среды
1.Биоценоз.
В природе популяции разных видов объединяются в системы более высокого ранга — сообщества, или биоценозы.
Биоценоз (греч. bios — жизнь, koinos — общий) — исторически сложившаяся устойчивая совокупность популяций растений, животных, грибов и микроорганизмов, приспособленных к совместному обитанию на однородном участке террит
125 руб.
Организация и расчет испытаний задних мостов автомобилей «Газель»
Aronitue9
: 17 декабря 2015
1 ТЕХНИКО - ЭКОНОМИЧЕСКОЕ ОБОСНОВАНИЕ
1.1 Новые методы выявления транспортных потребностей населения
1.2 Прогнозирование транспортных потребностей населения
1.3 Анализ производственной деятельности МПАТП – 9
1.3.1 История развития МПАТП – 9 г. Омска
1.3.2 Финансовая деятельность МПАТА – 9
1.3.3 Производственная деятельность МПАТА – 9
1.4 Организация испытаний задних мостов автомобилей «Газель» в
МПАТП-9 г. Омска
2 ТЕХНОЛОГИЧЕСКАЯ ЧАСТЬ
2.1 Организация текущего ремонта (ТР) автомобилей
2.2 Основ
555 руб.
Соотношения между экономическими показателями, средние величины, индексы
Elfa254
: 4 ноября 2013
СОДЕРЖАНИЕ
Задание 1
Задание 2
Задание 3
Задание 4
Задание 5
Задание 6
Список использованной литературы
Задание 1
Объем продаж торговой организации в феврале составил 62 млн. руб. На март запланирован рост объема продаж на 4,5 %. Фактический объем продаж в марте по сравнению с февралем возрос на 3,0%.
Рассчитайте:
1) процент выполнения плана по объему продаж;
2) абсолютное изменение товарооборота в марте по сравнению с февралем и по сравнению с планом, а также запланированное увели
10 руб.