Контрольная работа по дискретной математике. 20-й вариант
Состав работы
|
|
|
|
Работа представляет собой rar архив с файлами (распаковать онлайн), которые открываются в программах:
- Microsoft Word
Описание
No1 Доказать равенства, используя свойства операций над множествами и определения операций. Проиллюстрировать при помощи диаграмм Эйлера-Венна. а) A\((AB)(AC)) = (A\B)\C б) (AB)(CB) = (AC)B.
No2 Даны два конечных множества: А={a,b,c}, B={1,2,3,4}; бинарные отношения P1 AB, P2 B2. Изобразить P1, P2 графически. Найти P = (P2P1)–1. Выписать области определения и области значений всех трех отношений: P1, P2, Р. Построить матрицу [P2], проверить с ее помощью, является ли отношение P2 рефлексивным, симметричным, антисимметричным, транзитивным. P1 = {(a,2),(a,4),(a,3),(c,1),(c,2),(c,3)}; P2 = {(1,1),(1,4),(2,3),(3,3),(4,1),(4,3),(4,4)}.
No3 Задано бинарное отношение P; найти его область определения и область значений. Проверить по определению, является ли отношение P рефлексивным, симметричным, антисимметричным, транзитивным. P Z2, P = {(x,y) | y x – 2}.
No4 Доказать утверждение методом математической индукции: 13 + 23 + 33 + ... + n3 = n2•(n+1)2/4.
No5 Бригада из восьми взломщиков одновременно выходит на грабеж трех разных магазинов. Сколькими способами они могут разделиться, если в каждой группе должно быть не менее 2 человек? Сколькими способами их после задержания могут рассадить по четырем одинаковым камерам (не менее чем по одному в каждую)?
No6 Сколько существует положительных трехзначных чисел: а) делящихся на числа 9, 21 или 30? б) делящихся ровно на одно из этих трех чисел?
No7 Найти коэффициенты при a=x2•y6•z2, b=x4•y•z, c=x4•y8 в разложении (5•x2+2•y2+3•z)6.
No8 Найти последовательность {an}, удовлетворяющую рекуррентному соотношению an+2 – 3•an+1 – 28•an = 0• и начальным условиям a1=15, a2=17.
No9 Орграф задан матрицей смежности. Необходимо:
а) нарисовать граф;
б) выделить компоненты сильной связности;
в) заменить все дуги ребрами и в полученном неориентированном графе найти эйлерову цепь (или цикл).
No10 Взвешенный граф задан матрицей длин дуг. Нарисовать граф. Найти: а) остовное дерево минимального веса;
б) кратчайшее расстояние от вершины v2 до остальных вершин графа, используя алгоритм Дейкстры.
No2 Даны два конечных множества: А={a,b,c}, B={1,2,3,4}; бинарные отношения P1 AB, P2 B2. Изобразить P1, P2 графически. Найти P = (P2P1)–1. Выписать области определения и области значений всех трех отношений: P1, P2, Р. Построить матрицу [P2], проверить с ее помощью, является ли отношение P2 рефлексивным, симметричным, антисимметричным, транзитивным. P1 = {(a,2),(a,4),(a,3),(c,1),(c,2),(c,3)}; P2 = {(1,1),(1,4),(2,3),(3,3),(4,1),(4,3),(4,4)}.
No3 Задано бинарное отношение P; найти его область определения и область значений. Проверить по определению, является ли отношение P рефлексивным, симметричным, антисимметричным, транзитивным. P Z2, P = {(x,y) | y x – 2}.
No4 Доказать утверждение методом математической индукции: 13 + 23 + 33 + ... + n3 = n2•(n+1)2/4.
No5 Бригада из восьми взломщиков одновременно выходит на грабеж трех разных магазинов. Сколькими способами они могут разделиться, если в каждой группе должно быть не менее 2 человек? Сколькими способами их после задержания могут рассадить по четырем одинаковым камерам (не менее чем по одному в каждую)?
No6 Сколько существует положительных трехзначных чисел: а) делящихся на числа 9, 21 или 30? б) делящихся ровно на одно из этих трех чисел?
No7 Найти коэффициенты при a=x2•y6•z2, b=x4•y•z, c=x4•y8 в разложении (5•x2+2•y2+3•z)6.
No8 Найти последовательность {an}, удовлетворяющую рекуррентному соотношению an+2 – 3•an+1 – 28•an = 0• и начальным условиям a1=15, a2=17.
No9 Орграф задан матрицей смежности. Необходимо:
а) нарисовать граф;
б) выделить компоненты сильной связности;
в) заменить все дуги ребрами и в полученном неориентированном графе найти эйлерову цепь (или цикл).
No10 Взвешенный граф задан матрицей длин дуг. Нарисовать граф. Найти: а) остовное дерево минимального веса;
б) кратчайшее расстояние от вершины v2 до остальных вершин графа, используя алгоритм Дейкстры.
Дополнительная информация
Уважаемый слушатель, дистанционного обучения,
Оценена Ваша работа по предмету: Дискретная математика
Вид работы: Контрольная работа 1
Оценка:Зачет
Дата оценки: 2013
Рецензия:
Оценена Ваша работа по предмету: Дискретная математика
Вид работы: Контрольная работа 1
Оценка:Зачет
Дата оценки: 2013
Рецензия:
Похожие материалы
Контрольная работа по дискретной математике. 2-й вариант. ДО
flea2905
: 20 ноября 2016
Уважаемый слушатель, дистанционного обучения,
Оценена Ваша работа по предмету: Дискретная математика
Вид работы: Контрольная работа 1
Оценка:Зачет
Дата оценки: 31.10.2016
Мурзина Татьяна Степановна
200 руб.
Контрольная работа по Дискретной математике. 1-й вариант
frankov
: 14 мая 2016
Контрольная работа по Дискретной математике 1 вариант. Содержит 4 решенный задачи.
Оценка: зачет.
1. Задано универсальное множество и множества Найти результаты действий a) - д) и каждое действие проиллюстрировать с помощью диаграммы Эйлера-Венна.
2. II. Ввести необходимые элементарные высказывания и записать логической формулой следующее предложение.
...
150 руб.
Контрольная работа по дискретной математике. 8-й вариант
cegizmund
: 8 апреля 2015
Контрольная работа по дискретной математике вариант 8
I. Задано универсальное множество U и множества A, B, C, D. Найти результаты действий а)-д) и каждое действие проиллюстрировать с помощью диаграмм Эйлера-Венна:
99 руб.
Контрольная работа по дискретной математике. 2-й семестр, 7-й вариант
saharok
: 19 февраля 2013
Задача № 1
Задано универсальное множество U={10,11,12,13,14} и множества A={10,11,12};B={12,13,14};C={10,14};D={12}. Найти результаты действий a) ; б) ; в) ; г) ; д) и каждое действие проиллюстрировать с помощью диаграммы Эйлера-Венна.
Задача № 2
Ввести необходимые элементарные высказывания и записать логической формулой следующее предложение: “Если А знаком с Б, и Б знаком с В, то либо А знаком с В, либо А не знаком с В”.
69 руб.
Контрольная работа по дискретной математике
ty4ka
: 23 сентября 2020
Вариант 15
No1 Доказать равенства, используя свойства операций над множествами и определения операций. Проиллюстрировать при помощи диаграмм Эйлера-Венна. а) (A\B) \ C = (A\C) \ B б) (A\B)C=((AB)C)\(BC).
No2 Даны два конечных множества: А={a,b,c}, B={1,2,3,4}; бинарные отношения P1 AB, P2 B2. Изобразить P1, P2 графически. Найти P = (P2P1)–1. Выписать области определения и области значений всех трех отношений: P1, P2, Р. Построить матрицу [P2], проверить с ее помощью, является ли отношени
200 руб.
Контрольная работа по дискретной математике
temirovchem
: 9 июня 2019
1.Задано универсальное множество и множества Найти результаты действий a) - д) и каждое действие проиллюстрировать с помощью диаграммы Эйлера-Венна.
а) б) в) г) д)
2. Ввести необходимые элементарные высказывания и записать логической формулой следующее предложение:
“Если оперативная память правильно установлена в контрольный компьютер, и он при запуске не выдает ошибки при проверке оперативной памяти, то оперативная память исправна”.
3. Для булевой функции найти методом преобразова
100 руб.
Контрольная работа по Дискретной математике
evgentys90x
: 13 марта 2017
Контрольная работа по Дискретной математике. Вариант № 5. Иркутский национальный исследовательский технический университет. 2016 г, оценка 4. преподаватель носырева л.л. заочно-вечерний факультет, информационные технологии, автоматизированые системы управления. без титульника, электронно вычеслительные машины, 2 курс. Экзамен. Кафедра кибернетики. Формат работы в pdf, листов в контрольной работе 19, темы множества, графы, отношения, функции, булевые функции
300 руб.
Контрольная работа по дискретной математике
ccc1981
: 13 декабря 2013
1. Задано универсальное множество и множества Найти результаты действий a) - д) и каждое действие проиллюстрировать с помощью диаграммы Эйлера-Венна.
2. Ввести необходимые элементарные высказывания и записать логической формулой следующее предложение.
“Если дискриминант квадратного уравнения неотрицательный, то уравнение имеет один корень или оно имеет два корня”.
3. Для булевой функции найти методом преобразования минимальную ДНФ. По таблице истинности построить СКНФ. По минимальной ДНФ по
75 руб.
Другие работы
Практическая работа по эконометрике. Анализ реальных экономических данных при помощи изученных эконометрических моделей.
sergiynua
: 22 августа 2014
1) Рассчитайте корреляцию между, экономическими показателями (не менее 6) из статистических данных по выборке не менее 50 наблюдений (из Интернета, печатных источников или Вашего предприятия). Интерпретируйте полученные данные.
2) Постройте линейную множественную регрессию. Определите теоретическое уравнение множественной регрессии. Оцените адекватность построенной модели. Определите значимость переменных, найдите среднюю ошибку аппроксимации (вручную в экселе), коэффициент детерминации, линейн
200 руб.
Лабораторная работа №1 по дисциплине: Информатика. Вариант 10
Roma967
: 17 марта 2023
ФОРМИРОВАНИЕ И ОБРАБОТКА ОДНОМЕРНЫХ МАССИВОВ
Задание
В соответствии с вариантом разработайте алгоритм обработки элементов массива.
Напишите программу на алгоритмическом языке в соответствии со схемой алгоритма.
Проведите тестирование программы в среде программирования.
№ варианта: 10
Массив А[15] сформировать датчиком случайных чисел.
Найти минимальный элемент и сумму отрицательных элементов. Заменить в массиве А минимальный элемент найденной суммой.
Схема алгоритма
Программа на языке Си
Рез
400 руб.
Контрольная работа №1 по дисциплине: Теория электрических цепей - ТЭЦ (вариант 6)
hellofromalexey
: 1 февраля 2020
Задача No1
Условие: Цепь, состоящая из трёх конденсаторов, подключена к источнику постоянного напряжения.
Дано: С1=60пФ=10-12Ф
С2=20 пФ=20-12Ф
С3=30 пФ=30-12Ф
Q=1.2×10-9Кл
Найти: Сэкв, U1, U2, U3, UAB, Q1, Q2, Q3, W
Задача No 2
Условие: Цепь постоянного тока состоит из смешанного соединения пяти сопротивлений
Дано: Rj=2 Ом
R1=8 Ом
R2=60 Ом
R3=120 Ом
R4=25 Ом
R5=15 Ом
I3=0,1 А
Найти:
200 руб.
Теоретические основы современных технологий беспроводной связи Лабораторные работы №1, №2, №3 ВАРИАНТ №03
89370803526
: 18 марта 2020
ЛР-1
Цель работы:
Ознакомиться со средой моделирования динамических систем Scicos. Научиться создавать простые модели, настраивать их параметры и параметры блоков.
Задание
С помощью динамической модели в программе Scicos вычислить значения заданной по варианту функции, построить графики зависимостей на экране осциллографа и графопостроителя. Обеспечить вывод результата на цифровой дисплей и в рабочую область ScicosLab.
Исходные данные: номер функции – 4, шаг изменения аргумента – 0.03, диап
200 руб.