Экономико-математические методы.
Состав работы
|
|
|
|
Работа представляет собой rar архив с файлами (распаковать онлайн), которые открываются в программах:
- Microsoft Word
Описание
ЗАДАЧА 1.
На территории города имеется три телефонных станции А, Б и В. Незадействованные емкости станций составляют на станции А - 600, Б - 400, В - 200 номеров. Потребности новых районов застройки города в телефонах составляют: 1 - 200, 2 - 160, 3 - 240, 4 - 600 номеров.
Необходимо составить экономико-математическую модель задачи и с помощью распределительного или модифицированного метода линейного программирования найти вариант распределения емкостей телефонных станций между районами новой застройки, который обеспечивал бы минимальные затраты как на строительство, так и на эксплуатацию линейных сооружений телефонной сети. Естественно, что таким вариантом при прочих равных условиях будет такое распределение емкости, при котором общая протяженность абонентских линий будет минимальной.
ЗАДАЧА 2.
Необходимо оценить работу автоматической телефонной станции (АТС), которая имеет n=12 линий связи. Моменты поступления вызовов на станцию являются случайными и независимыми друг от друга. Средняя плотность потока равна λ=3 вызова в единицу времени. Продолжительность каждого разговора является величиной случайной и подчинена показательному закону распределения. Среднее время одного разговора равно tобс =1 единица времени.
ЗАДАЧА 3.
В таблице приведены затраты времени почтальона (в минутах) на проход между пунктами доставки на участке. Используя метод "ветвей и границ", найти маршрут почтальона, при котором затраты времени на его проход будут минимальными.
ЗАДАЧА 4.
На сетевом графике цифры у стрелок показывают в числителе - продолжительность работы в днях, в знаменателе - количество ежедневно занятых работников на её выполнение.
В распоряжении организации, выполняющей этот комплекс работ. Имеется 28 рабочих, которых необходимо обеспечить непрерывной и равномерной работой.
Используя имеющиеся запасы времени по некритическим работам, скорректируйте сетевой график с учётом ограничения по количеству рабочих.
На территории города имеется три телефонных станции А, Б и В. Незадействованные емкости станций составляют на станции А - 600, Б - 400, В - 200 номеров. Потребности новых районов застройки города в телефонах составляют: 1 - 200, 2 - 160, 3 - 240, 4 - 600 номеров.
Необходимо составить экономико-математическую модель задачи и с помощью распределительного или модифицированного метода линейного программирования найти вариант распределения емкостей телефонных станций между районами новой застройки, который обеспечивал бы минимальные затраты как на строительство, так и на эксплуатацию линейных сооружений телефонной сети. Естественно, что таким вариантом при прочих равных условиях будет такое распределение емкости, при котором общая протяженность абонентских линий будет минимальной.
ЗАДАЧА 2.
Необходимо оценить работу автоматической телефонной станции (АТС), которая имеет n=12 линий связи. Моменты поступления вызовов на станцию являются случайными и независимыми друг от друга. Средняя плотность потока равна λ=3 вызова в единицу времени. Продолжительность каждого разговора является величиной случайной и подчинена показательному закону распределения. Среднее время одного разговора равно tобс =1 единица времени.
ЗАДАЧА 3.
В таблице приведены затраты времени почтальона (в минутах) на проход между пунктами доставки на участке. Используя метод "ветвей и границ", найти маршрут почтальона, при котором затраты времени на его проход будут минимальными.
ЗАДАЧА 4.
На сетевом графике цифры у стрелок показывают в числителе - продолжительность работы в днях, в знаменателе - количество ежедневно занятых работников на её выполнение.
В распоряжении организации, выполняющей этот комплекс работ. Имеется 28 рабочих, которых необходимо обеспечить непрерывной и равномерной работой.
Используя имеющиеся запасы времени по некритическим работам, скорректируйте сетевой график с учётом ограничения по количеству рабочих.
Дополнительная информация
Перова Е. А. зачет
Похожие материалы
Экономико математические методы
Катрина23
: 30 января 2018
1. Принятие решений методами динамического программирования (на примере задачи определения стратегии замены оборудования).
2. Построение кольцевых маршрутов методами Дакеля и Дакеля-Габра.
3. Задача:
На двух участках производства необходимо выполнить работы объемом: Q1= 230 на одном участке и Q2= 160 на втором участке. Работы должны быть выполнены в течение 20 часов. К выполнению работ могут быть привлечены две бригады. Выработка бригады за один час работы на одном участке составляет у бригад
150 руб.
Экономико-математические методы
tanya090388
: 22 октября 2017
Требования к выполнение и оформлению контрольной работы
Каждый студент должен выполнить одну контрольную работу, включающую 4 задачи. Исходные данные к задаче студент выбирает в соответствии с последней цифрой номера студенческого билета.
Условие каждой задачи необходимо записывать полностью, заменяя общие данные конкретными своего варианта.
Решение задач излагается подробно и аккуратно, с объяснением всех действий.
После получения прорецензированной работы (как допущенной к зачету, так и не
150 руб.
Экономико-математические методы
Alessanderrr
: 13 октября 2016
Всего в работе 4 задачи.
Задача 1
На территории города имеется три телефонных станции А, Б и В. Незадействованные емкости станций составляют на станции А - QА, Б - QБ, В - QВ номеров (таблица 1.1). Потребности новых районов застройки города в телефонах составляют: 1 - q1, 2 - q2, 3 - q3, 4 - q4 номеров (таблица 1.2).
Необходимо составить экономико-математическую модель задачи и с помощью распределительного или модифицированного метода линейного программирования найти вариант распределения емкост
100 руб.
Экономико-математические методы
Танча
: 9 апреля 2016
ЗАДАЧА 1.
На территории города имеется три телефонных станции А, Б и В. Незадействованные емкости станций составляют на станции А - QА=700, Б - QБ=900, В - QВ=1100 номеров . Потребности новых районов застройки города в телефонах составляют: 1 - q1=600, 2 - q2=1000, 3 - q3=700, 4 - q4 = 400 номеров .
Необходимо составить экономико-математическую модель задачи и с помощью распределительного или модифицированного метода линейного программирования найти вариант распределения емкостей телефонных стан
100 руб.
Экономико-математические методы
evelin
: 4 ноября 2013
Задача 1. Необходимо составить оптимальный суточный рацион кормления на стойловый период для дойных коров живой массой 550 кг. Минимальная потребность коров в кормовых единицах и переваримом протеине в зависимости от суточного удоя приведена в табл. 2.
15 руб.
Математические методы в экономике
GnobYTEL
: 23 мая 2012
Построить модель оптимального выпуска ежедневной продукции как задачу линейного программирования.
Решить задачу графическим методом.
Построить двойственную задачу.
Используя теоремы двойственности, найти решение двойственной задачи.
Определить какие ресурсы являются дефицитными.
Решить задачу с помощью ППП Excel.
Сформулировать двойственную задачу и найти ее решение, используя теоремы двойственности.
Проанализировать решения задачи на чувствительность.
Дать экономическую интерпретацию полученн
50 руб.
Экономико-математические методы и модели.
studypro3
: 6 января 2020
Задание 1. Построить двойственную модель к заданной задаче линейного програм-мирования (ЗЛП)
Задание 2. Решить двойственную задачу графическим или симплексным методом
Задание 3. Найти решение исходной ЗЛП, используя теоремы двойственной и по-лученное решение двойственной задачи
300 руб.
Экономико-математические методы и модели
mahaha
: 8 марта 2017
ЗАДАЧА 1.
На территории города имеется три телефонных станции А, Б и В. Незадействованные емкости станций составляют на станции А - QА=1600, Б - QБ=800, В - QВ=400 номеров . Потребности новых районов застройки города в телефонах составляют: 1 - q1=800, 2 - q2=900, 3 - q3=400, 4 - q4 = 700 номеров .
Необходимо составить экономико-математическую модель задачи и с помощью распределительного или модифицированного метода линейного программирования найти вариант распределения емкостей телефонных станц
45 руб.
Другие работы
Гидравлика Задача 1.145
Z24
: 1 декабря 2025
Разность скоростей между двумя соседними слоями жидкости толщиной ðn=0,02 мм равна ðu=0,0072 м/ч. Рассматриваемая жидкость имеет коэффициент динамической вязкости μ=13,04·10-4 Н·с/м². Определить тангенциальное напряжение и силу трения на 1 м² поверхности между слоями жидкости (рис. 1).
120 руб.
Лабораторная работа №3 по дисциплине "Теория вычислительных процессов" 5 семестр 6 вариант
mastar
: 5 октября 2012
О Т Ч Е Т
по лабораторной работе № 3
по предмету «Теория вычислительных процессов»
Процессы. Параллельные процессы. Последовательные процессы
Задания
1. Изложите суть проблем, возникающих в модели системы, описанной притчей о пяти обедающих философах.
2. Объясните, каким образом совокупность обычных операторов последовательного программирования может быть взята за основу структуры последовательных взаимодействующих процессов.
3. Опишите структуру и способ построения системы, в которой огранич
125 руб.
Контрольная и Лабораторная работа по дисциплине: Электронные системы документооборота. Вариант №7
IT-STUDHELP
: 19 декабря 2022
Вариант: 7
Лабораторная работа №1
по дисциплине:
«Электронные системы документооборота»
Цель работы
Целью лабораторной работы является приобретение практических навыков разработки и оформления организационно-распорядительных документов с использованием пакета Microsoft Word.
2. Задание
2.1. Ознакомиться с требованиями к содержанию и стилю оформления организационно-распорядительных документов
2.2. Составить должностную инструкцию, распоряжение, приказ.
2.3. Создать с использованием пак
650 руб.
Внутренний аудит инвестиционных проектов (на примере ОАО "ТАНЕКО")
evelin
: 13 ноября 2013
Содержание
Введение
1. Роль внутреннего аудита при реализации инвестиционного проекта
1.1 Понятие, задачи и функции внутреннего аудита
1.2 Концепция внутреннего аудита инвестиционного проекта
2. Внутренний аудит бизнес-плана инвестиционного проекта ОАО «ТАНЕКО»
2.1 Резюме проекта ОАО «ТАНЕКО»
2.2 Расчет интегральных показателей эффективности по проекту
2.3 Анализ основных показателей проекта
3. Обобщение и реализация результатов внутреннего аудита
3.1 Факторы, влияющие на искажение инф
5 руб.