Экзамен по дисциплине: Теория сложностей вычислительных процессов и структур. Билет №9

Состав работы

material.view.file_icon
material.view.file_icon
material.view.file_icon 09.docx
Работа представляет собой zip архив с файлами (распаковать онлайн), которые открываются в программах:
  • Microsoft Word

Описание

1. Имеется склад, на котором присутствует некоторый ассортимент товаров. Запас каждого товара неограничен. У каждого товара своя стоимость сi и масса mi. Методом динамического программирования сформировать такой набор товаров с максимальной стоимостью, чтобы его суммарная масса не превышала заданную грузоподъемность М.

2. С помощью алгоритма Форда-Беллмана найти кратчайшие расстояния от вершины 2 (нумерация вершин начинается с 0) до всех остальных вершин связного взвешенного неориентированного графа, имеющего 6 вершин. Граф задан матрицей смежности, (0 означает, что соответствующей дуги нет).

Дополнительная информация

Оценка: Отлично
Экзамен по дисциплине "Теория сложности вычислительных процессов и структур" Билет №9
Билет №9 (Все задачи решаются «вручную») 1. По алгоритму Дейкстры найти кратчайшее расстояние от вершины 2 до всех остальных вершин связного взвешенного неориентированного графа, имеющего 5 вершин (нумерация вершин начинается с 0). Граф задан матрицей весов дуг, соединяющих всевозможные пары вершин. 2. Оптимальным образом расставить скобки при перемножении матриц М1[6x3], M2[3x9], M3[9x2], М4[2x5], M5[5x7]
User sonya555941 : 20 января 2016
250 руб.
Теория сложностей вычислительных процессов и структур. Билет №9
Билет No9 1. Имеется склад, на котором присутствует некоторый ассортимент товаров. Запас каждого товара неограничен. У каждого товара своя стоимость сi и масса mi. Методом динамического программирования сформировать такой набор товаров с максимальной стоимостью, чтобы его суммарная масса не превышала заданную грузоподъемность М. Номер товара, i mi сi M 1 6 21 27 2 4 14 3 7 24 52 2. С помощью алгоритма Форда-Беллмана найти кратчайшие расстояния от вершины 2 (нумерация вершин начинается с 0) д
User IT-STUDHELP : 29 декабря 2021
380 руб.
promo
Экзамен по дисциплине: Теория сложности вычислительных процессов и структур
1. По алгоритму Дейкстры найти кратчайшее расстояние от вершины 0 до всех остальных вершин связного взвешенного неориентированного графа, имеющего 5 вершин (нумерация вершин начинается с 0). Граф задан матрицей весов дуг, соединяющих всевозможные пары вершин. 2. Оптимальным образом расставить скобки при перемножении матриц М1[3x5], M2[5x2], M3[2x9], М4[9x3], M5[3x6]
User aikys : 18 июня 2016
60 руб.
Теория сложностей вычислительных процессов и структур. Экзамен. Билет №9.
Билет №9 (Все задачи решаются «вручную») 1. По алгоритму Дейкстры найти кратчайшее расстояние от вершины 2 до всех остальных вершин связного взвешенного неориентированного графа, имеющего 5 вершин (нумерация вершин начинается с 0). Граф задан матрицей весов дуг, соединяющих всевозможные пары вершин. 2. Оптимальным образом расставить скобки при перемножении матриц М1[6x3], M2[3x9], M3[9x2], М4[2x5], M5[5x7]
User nik200511 : 18 декабря 2018
241 руб.
Теория сложностей вычислительных процессов и структур. Экзамен. Билет №9.
Теория сложностей вычислительных процессов и структур
Задача 1. Лестница У лестницы n ступенек, пронумерованных числами 1, 2,.. , n снизу вверх. На каждой ступеньке написано число. Начиная с подножия лестницы (его можно считать ступенькой с номером 0), требуется взобраться на самый верх (ступеньку с номером n). За один шаг можно подниматься на одну или на две ступеньки. После подъёма числа, записанные на посещённых ступеньках, складываются. Нужно подняться по лестнице так, чтобы сумма этих чисел была как можно больше. Задача 2. Ход конём Дана прям
User NikolaSuprem : 9 февраля 2021
300 руб.
Экзамен по дисциплине: Теория сложностей вычислительных процессов и структур. Билет №2
илет №2 1. С помощью алгоритма Форда-Беллмана найти кратчайшие расстояния от вершины 2 (нумерация вершин начинается с 0) до всех остальных вершин связного взвешенного неориентированного графа, имеющего 6 вершин. Граф задан матрицей смежности, (0 означает, что соответствующей дуги нет). 0 5 0 1 7 1 5 0 2 3 2 4 0 2 0 5 3 1 1 3 5 0 4 5 7 2 3 4 0 3 1 4 1 5 3 0 2. Имеется склад, на котором присутствует некоторый ассортимент товаров. Запас каждого товара неограничен. У каждого товара своя стоимость
User holm4enko87 : 15 мая 2025
270 руб.
promo
Экзамен По дисциплине: Теория сложности вычислительных процессов и структур. Билет №12.
Билет №12 1. С помощью алгоритма Форда-Беллмана найти кратчайшие расстояния от вершины 5 (нумерация вершин начинается с 0) до всех остальных вершин связного взвешенного неориентированного графа, имеющего 6 вершин. Граф задан матрицей смежности, (0 означает, что соответствующей дуги нет). 2. Имеется склад, на котором присутствует некоторый ассортимент товаров. Запас каждого товара неограничен. У каждого товара своя стоимость сi и масса mi. Методом динамического программирования сформировать так
User teacher-sib : 23 февраля 2025
300 руб.
Экзамен По дисциплине: Теория сложности вычислительных процессов и структур. Билет №12. promo
Экзамен по дисциплине: Теория сложностей вычислительных процессов и структур. Билет №4
Билет №4 1.Имеется склад, на котором присутствует некоторый ассортимент товаров. Запас каждого товара неограничен. У каждого товара своя стоимость сi и масса mi. Методом динамического программирования сформировать такой набор товаров с максимальной стоимостью, чтобы его суммарная масса не превышала заданную грузоподъемность М. Номер товара, i mi сi M 1 7 21 25 2 3 8 3 8 18 52 2. По алгоритму Краскала найти остов минимального веса для связного взвешенного неориентированного графа, имеющего 6
User IT-STUDHELP : 20 апреля 2023
380 руб.
Экзамен по дисциплине: Теория сложностей вычислительных процессов и структур. Билет №4 promo
Электропитание устройств связи (5 вариант) + любой другой по запросу
Начертите схему выпрямления и временные диаграммы напряжения на её входе и выходе согласно Вашему варианту задания (табл.1), поясните принцип работы рассматриваемого выпрямителя. Определите: действующие значения напряжения U2 и тока I2 на вторичной обмотке трансформатора (табл. 2); частоту пульсации первой (основной) гармоники f1 выходного напряжения и коэффициент пульсации по первой гармонике КП1; коэффициент трансформации силового трансформатора Ктр. Выберите тип кремниевых диодов (табл. 3) и
User Григорий12 : 13 ноября 2016
350 руб.
Электропитание устройств связи (5 вариант) + любой другой по запросу
Контрольная работа по физике № 2. 1-й семестр.
367. От источника с напряжением U = 800 В необходимо передать потребителю мощность Р= 10 кВт на некоторое расстояние. Какое наибольшее сопротивление может иметь линия передачи, чтобы потери энергии в ней не превышали 10% от передаваемой мощности? 377. За время t = 8 с при равномерно возраставшей силе тока в проводнике сопротивлением R = 8 Ом выделилось количество теплоты Q = 500 Дж. Определить заряд q, проходящий в проводнике, если сила тока в начальный момент времени равна нулю. 407. По беско
User sanco25 : 1 февраля 2012
50 руб.
Тепловой двигатель с внешним подводом теплоты
Введение Автомобильный двигатель прошел длительный путь развития и с технической точки зрения является совершенным. Однако до настоящего времени наибольшее внимание в процессе его совершенствования уделялось достижению максимальной мощности, малой массы и размеров двигателя, минимальных производственных затрат. Теперь на первый план как важнейший критерий оценки двигателя выступает минимизация потребления им топлива. Снижения потребления топлива достичь непросто, и, кроме того, оно может оказыва
User Qiwir : 9 августа 2013
10 руб.
Учет нематериальных активов бюджетного учреждения
Введение Сущность и состав нематериальных активов в бюджетном учете Бюджетный учет операций с нематериальными активами Амортизация нематериальных активов Особенности учета разработки интернет-сайта Заключение Список литературы Практическая часть
User OstVER : 21 января 2013
5 руб.
up Наверх